一、安装zooeleeper
下载安装包:http://zookeeper.apache.org/releases.html#download
下载后解压到一个目录:
1.进入Zookeeper设置目录,我的D:\java\Tool\zookeeper-3.4.13\conf
2. 将“zoo_sample.cfg”重命名为“zoo.cfg”
3. 在任意文本编辑器(如notepad)中打开zoo.cfg
4. 找到并编辑dataDir=D:\\java\\Tool\\zookeeper-3.4.13\\tmp
5. 与Java中的做法类似,我们在系统环境变量中添加:
a. 在系统变量中添加ZOOKEEPER_HOME = D:\java\Tool\zookeeper-3.4.13
b. 编辑path系统变量,添加为路径%ZOOKEEPER_HOME%\bin;
6. 在zoo.cfg文件中修改默认的Zookeeper端口(默认端口2181)
修改zkServer.cmd set JAVA=D:\JDK1.8\bin\java 自己的jdk路径
打开新的cmd,输入zkServer,运行Zookeeper。
8. 命令行提示如下:说明本地Zookeeper启动成功
二、安装与运行Kafka
下载http://kafka.apache.org/downloads.html。注意要下载二进制版本的
下载后解压到任意一个目录,我的的是D:\Java\Tool\kafka_2.11-0.10.0.1
1. 进入Kafka配置目录,D:\java\Tool\kafka_2.11-0.10.0.1
2. 编辑文件“server.properties”
3. 找到并编辑log.dirs=D:\java\Tool\kafka_2.11-0.10.0.1\kafka-log,这里的目录自己修改成自己喜欢的
4. 找到并编辑zookeeper.connect=localhost:2181。表示本地运行
5. Kafka会按照默认,在9092端口上运行,并连接zookeeper的默认端口:2181。
6.修改kafka-run-class.bat
找到 set JAVA的地方 改成set JAVA=D:\JDK1.8/bin/java 自己的jdk路径
在kafka安装目录中找到bin\windows目录中的kafka-run-class.bat为%CLASSPATH%加上双引号
#修改前
set COMMAND=%JAVA%%KAFKA_HEAP_OPTS% %KAFKA_JVM_PERFORMANCE_OPTS% %KAFKA_JMX_OPTS%%KAFKA_LOG4J_OPTS% -cp%CLASSPATH% %KAFKA_OPTS% %*
#修改后
set COMMAND=%JAVA%%KAFKA_HEAP_OPTS% %KAFKA_JVM_PERFORMANCE_OPTS% %KAFKA_JMX_OPTS%%KAFKA_LOG4J_OPTS% -cp"%CLASSPATH%"%KAFKA_OPTS% %*
运行:
重要:请确保在启动Kafka服务器前,Zookeeper实例已经准备好并开始运行。
1.进入Kafka安装目录D:\java\Tool\kafka_2.11-0.10.0.1
2.按下Shift+右键,选择“打开命令窗口”选项,打开命令行。
3.现在输入
.\bin\windows\kafka-server-start.bat .\config\server.properties
三、测试
上面的Zookeeper和kafka一直打开
(1)、创建主题
1.进入Kafka安装目录D:\Java\Tool\kafka_2.11-0.10.0.1
2.按下Shift+右键,选择“打开命令窗口”选项,打开命令行。
3.现在输入
.\bin\windows\kafka-topics.bat --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic zhengneng
创建生产者
进入Kafka安装目录D:\Java\Tool\kafka_2.11-0.10.0.1
2.按下Shift+右键,选择“打开命令窗口”选项,打开命令行。
3.现在输入D:\java\Tool\kafka_2.11-0.10.0.1>.\bin\windows\kafka-console-producer.bat --broker-list localhost:9092 --topic zhangneng
创建消费者
进入Kafka安装目录D:\Java\Tool\kafka_2.11-0.10.0.1
2.按下Shift+右键,选择“打开命令窗口”选项,打开命令行。
3.现在输入D:\java\Tool\kafka_2.11-0.10.0.1>.\bin\windows\kafka-console-consumer.bat --zookeeper localhost:2181 --topic zhangneng
然后在生产者控制台输入信息 消费者控制台就会打印出信息
结合我们的项目 jdk版本使用1.8
pom.xml
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>2.1.1</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.12</artifactId>
<version>2.1.1</version>
</dependency>
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>1.1.1.RELEASE</version>
</dependency>
worker.properties
################# kafka producer ##################
kafka.producer.bootstrap.servers=localhost:9092
kafka.producer.acks = all
#发送失败重试次数
kafka.producer.retries = 3
kafka.producer.linger.ms = 10
# 33554432 即32MB的批处理缓冲区
kafka.producer.buffer.memory = 40960
#批处理条数:当多个记录被发送到同一个分区时,生产者会尝试将记录合并到更少的请求中。这有助于客户端和服务器的性能
kafka.producer.batch.size = 4096
kafka.producer.defaultTopic = test
################# kafka consumer ################## ,
kafka.consumer.bootstrap.servers = localhost:9092
# 如果为true,消费者的偏移量将在后台定期提交
kafka.consumer.enable.auto.commit = true
#如何设置为自动提交(enable.auto.commit=true),这里设置自动提交周期
kafka.consumer.auto.commit.interval.ms=1000
#order-beta 消费者群组ID,发布-订阅模式,即如果一个生产者,多个消费者都要消费,那么需要定义自己的群组,同一群组内的消费者只有一个能消费到消息
kafka.consumer.group.id = order-beta
#在使用Kafka的组管理时,用于检测消费者故障的超时
kafka.consumer.session.timeout.ms = 30000
创建 生产者 kafka-producer.xml
<!--基本配置 -->
<bean id="producerProperties" class="java.util.HashMap">
<constructor-arg>
<map>
<!-- kafka服务地址,可能是集群-->
<entry key="bootstrap.servers" value="${kafka.producer.bootstrap.servers}" />
<!-- 有可能导致broker接收到重复的消息,默认值为3-->
<entry key="retries" value="${kafka.producer.retries}" />
<!-- 每次批量发送消息的数量-->
<entry key="batch.size" value="${kafka.producer.batch.size}" />
<!-- 默认0ms,在异步IO线程被触发后(任何一个topic,partition满都可以触发)-->
<entry key="linger.ms" value="${kafka.producer.linger.ms}" />
<!--producer可以用来缓存数据的内存大小。如果数据产生速度大于向broker发送的速度,producer会阻塞或者抛出异常 -->
<entry key="buffer.memory" value="${kafka.producer.buffer.memory}" />
<!-- producer需要server接收到数据之后发出的确认接收的信号,此项配置就是指procuder需要多少个这样的确认信号-->
<entry key="acks" value="${kafka.producer.acks}" />
<entry key="key.serializer" value="org.apache.kafka.common.serialization.StringSerializer" />
<entry key="value.serializer" value="org.apache.kafka.common.serialization.StringSerializer" />
</map>
</constructor-arg>
</bean>
<!-- 创建kafkatemplate需要使用的producerfactory bean -->
<bean id="producerFactory"
class="org.springframework.kafka.core.DefaultKafkaProducerFactory">
<constructor-arg>
<ref bean="producerProperties" />
</constructor-arg>
</bean>
<!-- 创建kafkatemplate bean,使用的时候,只需要注入这个bean,即可使用template的send消息方法 -->
<bean id="KafkaTemplate" class="org.springframework.kafka.core.KafkaTemplate">
<constructor-arg ref="producerFactory" />
<!--设置对应topic-->
<property name="defaultTopic" value="${kafka.producer.defaultTopic}" />
</bean>
创建 消费者 kafka-consumer.xml
<!--基本配置 -->
<bean id="consumerProperties" class="java.util.HashMap">
<constructor-arg>
<map>
<!--Kafka服务地址 -->
<entry key="bootstrap.servers" value="${kafka.consumer.bootstrap.servers}" />
<!--Consumer的组ID,相同goup.id的consumer属于同一个组。 -->
<entry key="group.id" value="${kafka.consumer.group.id}" />
<!--如果此值设置为true,consumer会周期性的把当前消费的offset值保存到zookeeper。当consumer失败重启之后将会使用此值作为新开始消费的值。 -->
<entry key="enable.auto.commit" value="${kafka.consumer.enable.auto.commit}" />
<!--网络请求的socket超时时间。实际超时时间由max.fetch.wait + socket.timeout.ms 确定 -->
<entry key="session.timeout.ms" value="${kafka.consumer.session.timeout.ms}" />
<entry key="key.deserializer"
value="org.apache.kafka.common.serialization.StringDeserializer" />
<entry key="value.deserializer"
value="org.apache.kafka.common.serialization.StringDeserializer" />
</map>
</constructor-arg>
</bean>
<!-- 实际执行消息消费的类 -->
<bean id="messageListernerConsumerService" class="com.qianxiang.v1.common.kafka.KafkaConsumerListener" />
<!-- 创建consumerFactory bean -->
<bean id="consumerFactory" class="org.springframework.kafka.core.DefaultKafkaConsumerFactory">
<constructor-arg>
<ref bean="consumerProperties"/>
</constructor-arg>
</bean>
<!-- 消费者容器配置信息 -->
<bean id="containerProperties" class="org.springframework.kafka.listener.config.ContainerProperties">
<constructor-arg value="test"/>
<property name="messageListener" ref="messageListernerConsumerService"/>
</bean>
<!-- 创建messageListenerContainer bean,使用的时候,只需要注入这个bean -->
<bean id="messageListenerContainer" class="org.springframework.kafka.listener.KafkaMessageListenerContainer"init-method="doStart">
<constructor-arg ref="consumerFactory"/>
<constructor-arg ref="containerProperties"/>
</bean>
spring-context.xml 增加配置
<import resource="kafka-producer.xml"></import>
<import resource="kafka-consumer.xml"></import>
public void onMessage(ConsumerRecord<Integer, String> consumerRecord) {
Object o = consumerRecord.value();
System.out.println(String.valueOf(o));
}
测试方法
@Resource
private KafkaTemplate<Integer, String> kafkaTemplate;
@UnSession
@RequestMapping(value = "/lcmain")
public void getlcbidmain() throws Exception {
kafkaTemplate.setProducerListener(producerListener);
System.out.println(kafkaTemplate.getDefaultTopic());
kafkaTemplate.sendDefault("testvalue");
}
kafkaTemplate
Ctrl+鼠标左键进入KafkaTemplate的源代码中查看一下,可以看到有关发送的接口如下。
topic:这里填写的是Topic的名字
partition:这里填写的是分区的id,其实也是就第几个分区,id从0开始。表示指定发送到该分区中
timestamp:时间戳,一般默认当前时间戳
key:消息的键
data:消息的数据
ProducerRecord:消息对应的封装类,包含上述字段
Message<?>:Spring自带的Message封装类,包含消息及消息头
1、根据业务需要,发送数据消息到Kafka可能需要在业务逻辑处理完成之后,特别是在对外服务的接口中,为保证接口不超时,发送消息到Kafka,把消息丢到线程池中,而不要使用Kafka提供的send方法直接方法,否则出现异常,对系统本身 以及对 接口响应时间 都有影响,在线程池中,实现send功能,并且要捕获异常。
2、订阅Kafka消息的Consumer代码,也要捕获异常,防止因为其它的异常,导致系统业务不能正常使用
3、无论是请求外部系统的接口,还是提供给外部系统的接口,都要捕获异常,不要因为外部系统接口的问题,导致自身系统业务逻辑出错