- 博客(915)
- 资源 (7)
- 收藏
- 关注
原创 腾讯视频弹幕工具开发「上」
本教程介绍了如何开发一个腾讯视频弹幕抓取程序。通过分析腾讯视频的弹幕请求URL结构,发现弹幕链接由剧集ID和时间段组成,每段间隔30000毫秒。教程提供了两种批量生成弹幕链接的Python代码方案,并通过代码验证了两种方法的等价性。最终目标是实现用户只需输入视频链接,程序就能自动获取该集所有弹幕数据,并支持基础的弹幕词云展示功能。教程强调了编程思路的重要性,建议通过观察和计算来验证链接规律。
2025-11-11 08:27:56
459
原创 01-什么才是真正的数据思维?
萨莉是女性记者,但她没有被“数字无感”“数学不好”这种偏见束缚。同样,数学好、会编程的男生,也不一定拥有高水平的数据思维。数据思维是一个独立的能力,它需要刻意培养和长期训练。
2025-10-13 13:42:12
61
原创 00-拿到「数据时代通行证」:普通人也能掌握的数据思维
《数据思维:数字时代的生存必修课》摘要 在数据驱动时代,掌握数据思维比学习工具更重要。文章通过《红楼梦》作者争议案例揭示:数据需用数据反驳,手工统计也能验证假设。现代生活中,数据已渗透导航、物流、政务等领域,具备数据思维者能识别机会而非陷阱。核心能力在于提出问题(如招聘专员利用面评数据建立标准)、挖掘资源、推动协作解决。数据思维包含感知、收集、理解和运用数据四步,是与数据专家对话的基础。文章强调:数据思维是数字时代的通行证,普通人无需精通算法,但需培养这种核心生存技能。
2025-10-12 08:21:23
117
原创 03-正则分组与引用:把文本处理玩出花样
正则表达式的分组与引用是提升匹配灵活性的重要技巧。文章通过实例讲解了如何利用括号进行分组,并介绍了分组编号规则、命名分组、不保存子组的优化方法。重点演示了分组在查找和替换中的实际应用,如在文本编辑器中批量处理重复单词、格式化日期等场景。最后通过一个合并重复单词的练习,帮助读者巩固分组引用技巧,推荐使用regex101工具进行实践。掌握这些知识能显著提高正则表达式的编写效率和文本处理能力。
2025-09-29 21:09:00
247
原创 02-量词与贪婪:小小的正则,也可能把CPU拖垮!
你好,我是悦创。在上一讲里,我们聊过了正则里的元字符。今天要继续加点料,来看看。这三种模式,说白了就是在有量词的时候(比如?{m,n}),到底要尽量“吃多一点”,还是“吃少一点”,还是“干脆一次吃死,不回头”。如果不理解它们之间的差别,很容易写出结果和预期完全不一样的正则。
2025-09-29 10:41:50
76
原创 01-元字符:如何巧妙记忆正则表达式的基本元件?
本文摘要:正则表达式课程开篇讲解"元字符"这一基础概念。作者将元字符分为特殊单字符(如\d、\w)、空白符(\s、\n)、量词(*、+、?)和范围([]、|)四类,通过实例演示如何组合这些符号匹配特定文本模式(如手机号)。文章强调分类记忆和多练习的学习方法,并附上思维导图帮助理解。最后设置手机号匹配的思考题,引导读者实践应用所学知识。
2025-09-28 08:20:52
106
原创 00-1-正则表达式学习心得:从入门到上瘾,再到克制
学习正则表达式的正确路径:从概念到实践 很多人觉得正则表达式难学,往往是因为陷入了"改改能用就行"的浅层学习误区。本文分享了作者Cleland的学习经验:首先需要系统性地理解正则背后的概念模型(字符组、量词、锚点等),采用"分解问题→分析需求→套用语法→调试修正"的四步流程。更重要的是,学会后要克制过度使用,保持可读性和可维护性。真正的学习在于突破初期的理解障碍,一旦掌握就能获得长期收益。通过1-2周每天15-30分钟的专注学习,任何人都能掌握这项实用技能。
2025-09-27 17:14:32
127
原创 00-为什么要系统学习正则表达式?
学会正则,就像给自己多了一把瑞士军刀。从此,处理文本时,你不再手忙脚乱,而是胸有成竹。话不多说,咱们这就正式开启正则学习之旅吧!🚀。
2025-09-26 22:38:13
402
原创 结束语:数据分析师职场提升的关键点
摘要: 本专栏课程完结之际,悦创老师总结了两点核心建议: 学习思维重于形式:不要纠结案例本身,而应关注分析逻辑的合理性、适用性及如何迁移应用。 职场提升公式: 思考:培养敏捷、独到的见解能力; 表达:确保沟通精准有效; 执行:超出预期交付结果(如目标1做到1.2)。 数据分析师发展路径: 业务型:统计学→分析思维→工具(Excel/Python等)→经济学/心理学; 数据型:统计学→技术工具(Hadoop/Spark等)。推荐书籍包括《大数据之路》《京东平台数据化运营》等。 关键提醒:课程仅是起点,需持续学
2025-09-26 20:22:59
402
原创 时间管理:优秀的数据分析师如何做时间管理?
【摘要】本文分享了职场时间管理的实用方法,强调以"二八法则"安排优先级,根据状态处理要事与杂事,注重效果反馈和适度压力。关键点包括:早起带来高效与机遇,阶段性熬夜突破常规,合理利用通勤时间学习,选择性参会以学习管理思维,周末保持学习与娱乐平衡。作者指出,时间管理的核心在于克服惰性,培养工匠精神,坚持执行才能获得质变提升。文章鼓励读者选择适合自己的方法并付诸实践,通过持续优化时间管理实现职场成长。(149字)
2025-09-26 18:58:09
778
原创 用户研究:用户研究和数据分析的根本联系与区别
本文介绍了用户研究的核心内容:用户研究是通过调研了解用户需求、行为和反馈的方法,贯穿项目全周期。主要包括三个步骤:制定研究目的、选择研究方法(定性访谈和定量问卷)和快速产出结论。关键点在于结合数据分析,注重用户分类和样本代表性。注意事项包括关注用户行为背后的原因、避免直接询问偏好、及时整理访谈内容等。用户研究是数据分析师必备的技能,需通过日常产品体验、客服数据分析和推动用户调研来培养用户意识。最终目标是快速准确地理解用户,为产品优化提供依据。
2025-09-26 09:02:37
635
原创 数仓:数据仓库的三种类型表
本文介绍了数据仓库相关内容,分为四个部分: 数据研发工程师与分析师的关系:大公司分工明确,分析师需懂研发;小公司研发兼任分析工作但不够专业。 App日志采集中的埋点:分析师需主动参与埋点规范制定,避免后期分析困难,埋点文档化很重要。 数据建模步骤:分为ODS原始数据层、DWS数据仓库层和DM应用层,通过分层处理提高计算效率和数据可用性,建议迭代式开发而非大而全。 数据管理:包括计算管理(避免数据倾斜)、存储管理(合理设置保存周期)和权限管理(最小权限原则)。 最后强调埋点主动性、数据建模三层次和权限管理的重
2025-09-25 23:16:29
870
原创 行业分析:行业分析及框架分析
本文介绍了数据分析师进行行业分析的方法与电商行业案例。行业分析目标分为转型和用户需求验证,核心在于发现切入点而非大而全。通过电商行业案例,作者展示了五大分析模块:1)界定范围,建立产业链图谱;2)市场规模分析,包括交易额和用户增长;3)社会热点事件,如收入水平和微信支付普及;4)头部玩家(如拼多多)的产品特点;5)未来预测。重点强调数据分析要深入细节,通过独立思考发现关键点,如拼多多的快速增长源于简化购物流程和精准定位低收入用户群体。
2025-09-25 21:57:36
1066
原创 A/B 测试:让数据替你说话
摘要:A/B测试是数据驱动决策的关键工具,通过将用户随机分配到不同产品版本并对比数据,找出最优方案。文章介绍了A/B测试的核心概念、两类常见测试(界面设计和算法策略)及注意事项,强调单一变量、前期指标设计和数据观察周期的重要性。通过Netflix等案例展示了A/B测试的实际价值,建议产品、设计和数据分析师都应重视这一方法。A/B测试能降低风险,实现持续优化,是产品迭代的必备环节。
2025-09-23 21:15:10
816
原创 报告撰写:专题报告的完美标准化格式
本文介绍了撰写高质量专题报告的三大核心原则和标准结构。作者悦创提出专题报告应遵循主题一脉相承、通俗易懂、结论闭环先行三大原则,并通过实际案例详细剖析了常见问题。标准报告应包含背景、分析结论、框架、关键点及支撑数据、整体结论和具体落地项等要素。文章以一份彩妆行业分析报告为例,指出其在逻辑性、可视化、结论闭环等方面的不足,强调数据分析报告要服务于业务决策,确保每项结论都能推动实际落地。最后建议通过研读优秀报告和获取反馈来持续提升报告撰写能力。
2025-09-21 21:39:07
969
原创 用户增长:模型、现状与案例全解析
本文探讨用户增长的核心策略与实践。文章从三种增长模型(AARRR、留存优先、变现优先)切入,指出盲目套用模型的局限性,强调应结合产品特性建立独特增长路径。国内增长现状部分揭示常见误区,提出北极星指标和A/B测试等实用方法。通过摩拜案例,展现漏斗优化、功能精简和快速执行的关键作用。最后指出增长本质是体系化能力,需持续关注用户数据、产品运营闭环。全文约150字,提炼核心观点保持原意连贯。
2025-09-20 22:10:33
582
原创 如何把问题拆清楚?从识别到拆解的实战思路
《职场必备技能:如何精准定义与拆解问题》 本文围绕职场核心能力"问题定义与拆解"展开,通过两个典型案例演示方法论应用。第一个案例中,分析师小A被临时需求淹没,深层原因是业务方需求不明确;第二个案例展示如何分析APP用户骤降问题。作者提出四步拆解法:先自行拆解→与业务方核对→与领导确认→最终完善。关键要找到破局点(二八定律),并通过不断交流迭代方案。最后强调,有效沟通和多视角碰撞比独自钻研更重要,清晰的框架表达能帮助团队达成共识。掌握这套方法,能避免陷入表象问题,真正解决核心矛盾。
2025-09-19 15:05:24
520
原创 用户增长:模型、现状与案例全解析 [特殊字符]
《用户增长的本质与实战思考》摘要: 文章从AARRR增长模型切入,指出资本退潮后单纯拉新不可持续,提出"留存优先"和"变现先行"两种新思路。国内增长领域存在理论丰富但落地难的问题,真正的增长需要结合产品特性建立体系化能力,而非依赖魔法数字等"捷径"。以摩拜为例,其成功源于漏斗优化、AB测试和极简产品逻辑,但长期竞争力在于运营执行力。最后强调:增长不是奇招迭出,而是数据驱动、产品运营协同的体系化工程,需建立可复用的方法论而非追逐短期热点。(149字)
2025-09-16 14:10:02
583
原创 数据分析,我不知道怎么发了~
《基于深度学习的图像分类算法优化研究》聚焦卷积神经网络(CNN)在图像分类场景中的性能提升问题。论文通过引入注意力机制模块和残差连接结构,构建了改进的ResNet-50模型。实验在CIFAR-10和ImageNet数据集上验证,改进模型相比基准模型准确率提升3.2%,训练收敛速度加快15%。研究为复杂场景下的图像识别任务提供了有效的算法优化方案,具有重要的工程应用价值。
2025-09-14 19:09:10
142
原创 14-营销活动:日常运营活动的分析模板
《营销活动复盘全流程指南》从活动前准备到事后复盘,系统拆解了营销活动的分析方法论。文章首先指出当前营销活动普遍存在的"重投入轻效果"问题,强调数据分析师需全程参与。分析框架分为三个阶段:活动前明确目标、埋点准备;活动中实时监控、及时调整;活动后从短期贡献、长期价值、优化建议三个维度进行全面复盘。以百度APP圣诞活动为例,详细展示了指标体系构建和复盘方法。最后强调复盘要敢于暴露问题,通过活动间对比评估真实价值,为后续优化提供依据。
2025-09-14 19:00:24
1086
原创 证明自己没用 AI 成为诚实学生的新难题
摘要:AI检测工具误判频发,师生陷入信任危机 随着ChatGPT等AI工具的普及,美国高校普遍采用AI检测工具检查学生作业。然而,这些系统存在严重缺陷:马里兰大学研究发现平均6.8%的人类写作被误判。误判导致学生被迫录制93分钟写作视频自证清白,甚至影响毕业。非英语母语者更易被误判,引发系统性偏见争议。斯坦利大学等高校已停用检测工具,教育界呼吁重建师生信任而非依赖技术监控。这场技术引发的信任危机,正在重塑学术评价体系。
2025-08-31 07:42:34
727
原创 路径分析到底怎么玩?一文搞懂!
**摘要:**路径分析是洞察用户行为的关键工具,尤其适用于复杂功能的产品。与预设路径的漏斗分析不同,路径分析从用户行为数据出发,挖掘真实使用路径。以美团APP为例,通过日志分析、时序排序和可视化,发现美食、附近和订单页面的用户行为规律,如高频回退、搜索替代推荐等,并提出针对性优化建议(如调整排序逻辑、增强推荐)。此外,需注意用户分群、跨日行为和终端差异等进阶问题。路径分析的核心在于理解真实用户路径,持续优化产品体验。
2025-07-26 09:06:36
922
原创 数据分析师的看家本领:搞懂流量分析!
摘要:本文系统讲解了流量分析的核心框架与实操方法。主要内容包括:1)流量分析的四大模块:渠道分析、转化分析、价值分析和波动分析;2)渠道质量评估的四象限法则及全流程优化方法;3)功能价值的三大评估指标(渗透率、留存率、贡献度);4)数据波动的排查逻辑。文章强调流量分析需关注用户全路径行为,通过精细化数据拆解找到优化点,并指出要警惕表面数据,深入分析功能真实价值。最后提出"数据优先、关注大盘、说真话"三大原则。
2025-07-23 22:07:08
759
原创 搭建指标体系,就像打地基:数据分析不能绕过的第一步!
《数据分析指标体系构建指南》摘要:本文系统讲解了数据分析中指标体系的重要性及构建方法。重点指出常见问题源于缺乏统一指标体系,强调不同业务阶段需关注不同指标(初创期看用户量、发展期重留存、成熟期盯商业化)。提出三大指标选取原则(根本性、可理解性、结构性)和四步构建法:1.明确业务阶段;2.选取核心指标;3.拆解指标维度;4.宣贯落地。以知乎App为例,演示如何识别关键指标并拆解公式。最后强调指标体系是数据分析的骨架,必须实际执行才能真正发挥作用。
2025-07-20 14:01:41
921
原创 Day 3·知识卡片|Python基础:print 函数还能这么玩?
悦创Day4学习分享上线!本期内容包含多张精选配图,涵盖实用知识点。创作者诚邀读者点赞、关注、评论、收藏,完成一键完成四连互动。评论区开放问答环节,承诺有问必答。欢迎将优质内容分享给好友,共同学习成长。配图包括三张精心设计的图片素材,为学习内容提供直观辅助。(注:摘要不含具体学习主题,因原文未提供明确学习内容指向)
2025-07-18 22:53:16
290
原创 干货来了!一文搞懂“指标体系”的搭建逻辑!
《如何构建靠谱的数据指标体系?知乎App实战解析》摘要: 本文系统讲解了搭建数据指标体系的实用方法论。首先指出指标体系是业务分析的核心框架,强调其需要随业务阶段动态调整,并遵循根本性、可理解性和结构性三大原则。文章提出四步构建法:1)明确业务阶段特征;2)选定反映真实业务的核心指标;3)多维度拆解指标;4)重点做好体系落地推广。最后以知乎App为例,分析其处于"发展向成熟过渡期"的特征,拆解"问答数"作为核心指标,并展示如何落地执行。全文强调指标体系不是理论模型,而是
2025-07-18 18:16:16
1121
原创 销售行业数据分析实战:一个从0到1的案例拆解
《传统销售行业数据分析实战:从模糊需求到业务洞察》摘要 本文通过一个销售数据分析实战案例,演示了如何从零开始拆解模糊业务需求。面对全国销售报告和思维导图的需求,作者以"销售额完成率"为核心指标展开分析:首先通过区域对比发现经济水平与业绩不匹配现象(如西南区超预期);然后聚焦门店个案,分析Top门店58的成功经验(高价产品策略)和Bottom门店3的问题(缺乏爆款);最后总结区域消费偏好差异,提出定制化营销建议。文章提炼了五步分析法:理解业务模型→确定核心指标→多维拆解→发现规律→数据验证
2025-07-17 22:28:35
838
原创 欢乐斗地主数据分析全解:从用户流失到付费转化,游戏背后的“赚钱逻辑”你了解吗?
主要是对价格敏感的大众用户;高价值用户不多,也不容易长期留存;核心诉求是:更便宜、刺激点够强。在游戏行业做数据分析师,绝不是只看 Excel 表格这么简单。理解产品结构;深度体验玩法;明确用户心理;快速找到问题,提炼策略。因为你的分析结论,不仅关乎用户的去留,还直接影响公司营收!如果你觉得今天的内容对你有启发,欢迎留言交流,也可以关注我(公众号:AI悦创),我会持续分享更多实战类的分析技巧与案例!
2025-07-16 14:56:25
1311
原创 芝麻信用是怎么评分的?一文带你看懂金融风控背后的数据建模逻辑
摘要: 芝麻信用评分体系基于五大维度(身份特质、履约能力、信用历史、人脉关系、行为偏好),通过海量数据清洗、变量衍生与逻辑回归建模,最终输出综合信用分。金融风控的核心在于数据源与模型迭代:央行征信数据是基础,变量需经缺失值清洗、相关性剔除及标准化处理。模型评估依赖混淆矩阵与AUC值,落地阶段需多方数据联动(如招联金融合作案例),并持续优化坏账率。数据建模师需兼具算法能力与业务理解,推动模型从开发到商业化的全流程。
2025-07-16 10:44:08
1107
原创 京东 App 产品深度分析:从引流到转化,一个电商 App 的“解剖”报告
《京东App数据驱动优化拆解》摘要:本文从数据视角剖析京东App的运营策略,聚焦交易额提升路径。首先拆解首页结构,发现搜索模块是618大促的核心引流点;其次通过漏斗模型揭示支付环节存在地址修改入口缺失的转化瓶颈;最后分析新用户体验,指出注册弹窗时机、优惠券设计及文案等优化点。文章提出电商分析三大关键:首页分发效率、转化漏斗优化和新用户首日体验设计,强调数据分析需结合用户行为洞察与同理心。
2025-07-15 09:58:55
893
原创 Day 3·知识卡片|Python基础:print 函数还能这么玩?
【摘要】悦创发布Day2学习分享,包含10页内容图片,涵盖多个知识点。作者邀请读者点赞关注评论收藏,承诺评论区有问必答,并欢迎分享给好友。配图为CSDN博客风格的截图,每页展示不同学习内容,具体主题未明确说明但呈现系统化学习路径。
2025-07-12 10:58:39
435
原创 多元思维模型:数据分析需要具备的四大能力?
今天的课程就是讲解中观、微观、宏观能力。中观能力在公司都会学习一些,只要获得一些反馈再优化即可。微观能力特别注重平时的微观体感,所以分析时一定要有静下来的决心,注重套路的真实落地过程,从不同的业务方捕捉、提炼、沉淀,这是一个长期的训练。对于宏观,你需要关注行业内的动态,像新闻联播、财经类节目都是重要的数据源。另外多说一句,公司的 CEO 其实是顶级数据分析师这个角色,所以分析师这个天花板非常高,发展空间也非常大。
2025-07-11 21:05:36
1120
原创 如何挑选适合项目场景的数据分析工具?
数据分析工具与应用场景解析 本文系统介绍了数据分析的标准流程(9步骤)及常用工具对比。Excel在对比分析、时间序列拆解等场景中表现突出,可通过筛选、色阶、透视图等功能快速完成分析。SQL使用需注意字符串处理、日期转换等易错点。Python和R作为编程工具各有优势,前者扩展性强,后者统计功能专注。文章还通过滴滴新用户优惠券等案例,展示了如何运用Excel进行临界点分析等实用技巧。
2025-07-11 14:30:44
760
原创 怎样才更好地转型或成功跳槽?
📊 数据分析师进阶指南:从中小企业"打杂"到专业突破 3大核心问题解析 1️⃣ 流量波动分析:通过常识、竞品、舆情等6维度系统排查异常原因 2️⃣ 产品思维考察:用具体案例展示对App功能优化与A/B测试的理解 3️⃣ 商业化能力:从工具类App广告位设计到变现策略的完整思考路径 中小企业分析师现状 🔹 多面手困境:需兼顾埋点、指标、报表、平台建设等全流程工作 🔹 两类发展瓶颈:或陷于事务性工作缺乏沉淀,或误判自身实际能力 转型四步法 1️⃣ 赛道选择:明确业务/研发/算法方向 2
2025-07-10 23:12:49
1045
原创 从自学 Python 到入门 AI:那些我走过的坑和一对一辅导的价值
《从Python自学到AI私教:我的学习心得与建议》分享了作者作为过来人的编程学习经验。文章指出Python入门容易但坚持难,初学者常陷入"教程收集"循环;强调实践比刷题更重要,分享了自己通过项目实践突破瓶颈的经历;特别推荐一对一辅导的高效学习方式,能获得即时反馈和系统指导。作者现在从事Python/AI私教,建议学习者多动手实践、做小项目,遇到瓶颈及时寻求帮助。全文旨在帮助编程爱好者少走弯路,提倡"学以致用"的学习理念。
2025-07-09 22:18:36
512
原创 如何搞定 BAT 大厂的数据分析项目?
摘要:本文解析了BAT(阿里、腾讯、百度)数据分析师的工作内容与招聘要求。阿里重视业务敏感度与统筹能力,腾讯侧重增长黑客思维与技术执行力,百度强调策略研究与分析体系搭建。日常工作分为数据异常排查(需明确业务背景、指标口径)和专题分析(需绑定KPI、快速闭环)。面试建议准备流量波动分析、App评价及项目收益等核心问题。文章还提供了数据分析师职业发展的实用建议。(149字)
2025-07-09 21:55:53
1061
原创 国企 vs 银行 vs 电信:数据分析师岗位差异全解析
国企数据分析师工作全解析:岗位选择与职业发展指南 本文深入剖析国企数据分析师的工作内容与职业发展路径。首先通过对工行、招行、广发和电信四大国企的招聘信息对比,揭示不同企业的工作特点:技术导向型(工行)、业务创新型(招行)、综合业务型(广发)和稳定常规型(电信)。日常工作主要分为三类:周期性报表(培养数据敏感性)、临时数据提取(需避免成为"工具人")和日常优化(自动化与优先级管理)。专题分析是核心能力体现,需掌握需求解读、逻辑树构建、数据分析和报告撰写全流程。文章强调在国企环境中,除专业技
2025-07-08 17:30:17
818
原创 智力脑|03-什么是靠谱的智力提升法?
《科学育儿:揭露智力提升的真相》 在信息泛滥的时代,许多"提升孩子智力"的方法缺乏科学依据。孕期补铁、婴儿听音乐、注意力训练软件等方法,要么研究样本不适用普通儿童,要么缺乏严谨对照组,或仅有短期效果。真正有效的智力提升需满足三个条件:针对普通儿童、有科学对照组、产生持久效果。 科学证实有效的方法包括:补充适量Omega-3/DHA促进大脑发育,亲子互动(如唱歌、阅读)比被动听音乐更有效,以及创造丰富的语言环境。关键是通过多样化的刺激(视觉、听觉、运动等)促进"神经可塑性&quo
2025-07-07 17:46:25
557
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅