Chapter 1矢量分析
一、矢量代数
A ⃗ ⋅ B ⃗ = A B c o s θ \vec{A}·\vec{B}=ABcos\theta A⋅B=ABcosθ
- 标量
A ⃗ × B ⃗ = e n ⃗ A B s i n θ \vec{A}×\vec{B}=\vec{e_n}ABsin\theta A×B=enABsinθ
- 矢量
标量三重积
A ⃗ ⋅ ( B ⃗ × C ⃗ ) = B ⃗ ⋅ ( C ⃗ × A ⃗ ) = C ⃗ ⋅ ( A ⃗ × B ⃗ ) \vec{A}·(\vec{B}×\vec{C})=\vec{B}·(\vec{C}×\vec{A})=\vec{C}·(\vec{A}×\vec{B}) A⋅(B×C)=B⋅(C×A)=C⋅(A×B)
矢量三重积
A ⃗ × ( B ⃗ × C ⃗ ) = B ⃗ ⋅ ( A ⃗ ⋅ C ⃗ ) − C ⃗ ⋅ ( A ⃗ × B ⃗ ) \vec{A}×(\vec{B}×\vec{C})=\vec{B}·(\vec{A}·\vec{C})-\vec{C}·(\vec{A}×\vec{B}) A×(B×C)=B⋅(A⋅C)−C⋅(A×B)
二、正交坐标系
直角坐标系(x,y,z)
-
右手螺旋法则
e
x
⃗
⋅
e
y
⃗
=
e
z
⃗
\vec{e_x}·\vec{e_y}=\vec{e_z}
ex⋅ey=ez
-
e
y
⃗
⋅
e
z
⃗
=
e
x
⃗
\vec{e_y}·\vec{e_z}=\vec{e_x}
ey⋅ez=ex
-
e z ⃗ ⋅ e x ⃗ = e y ⃗ \vec{e_z}·\vec{e_x}=\vec{e_y} ez⋅ex=ey
-
长度元
d l x = d x , d l y = d y , d l z = d z dl_x=dx,dl_y=dy,dl_z=dz dlx=dx,dly=dy,dlz=dz
-
面积元
d
S
x
=
d
l
y
⋅
d
l
z
dS_x=dl_y·dl_z
dSx=dly⋅dlz
- S_y、S_z同理
-
体积元
d V = d l x ⋅ d l y ⋅ d l z dV=dl_x·dl_y·dl_z dV=dlx⋅dly⋅dlz
圆柱坐标系
( ρ , ϕ , z ) (\rho,\phi,z) (ρ,ϕ,z)
-
右手螺旋法则
- 类似直角坐标系
-
长度元
d
l
ρ
=
d
ρ
dl_{\rho}=d\rho
dlρ=dρ
-
d
l
ϕ
=
ρ
d
ϕ
dl_{\phi}=\rho d{\phi}
dlϕ=ρdϕ
-
d l z = d z dl_z=dz dlz=dz
-
面积元
- 两两长度元之积
-
体积元
- 长度元之积
球坐标系
( r , θ , ϕ ) (r,\theta,\phi) (r,θ,ϕ)
-
右手螺旋法则
- 类似直角坐标系
-
长度元
d
l
r
=
d
r
dl_r=dr
dlr=dr
-
d
l
θ
=
r
d
θ
dl_{\theta}=r d{\theta}
dlθ=rdθ
-
d l ϕ = r s i n θ d ϕ dl_{\phi}=rsin\theta d{\phi} dlϕ=rsinθdϕ
-
面积元
- 两两长度元之积
-
体积元
- 长度元之积
坐标转换
-
圆柱坐标系与直角坐标系
e
r
⃗
=
e
x
⃗
c
o
s
ϕ
+
e
y
⃗
s
i
n
ϕ
\vec{e_r}=\vec{e_x}cos\phi+\vec{e_y}sin\phi
er=excosϕ+eysinϕ
-
e
ϕ
⃗
=
−
e
x
⃗
s
i
n
ϕ
+
e
y
⃗
c
o
s
ϕ
\vec{e_{\phi}}=\vec{-e_x}sin\phi+\vec{e_y}cos\phi
eϕ=−exsinϕ+eycosϕ
- z的一样
-
x = ρ c o s ϕ , y = ρ s i n ϕ x=\rho cos\phi,y=\rho sin\phi x=ρcosϕ,y=ρsinϕ
-
球面坐标系与直角坐标系
e r ⃗ = e x ⃗ s i n θ c o s ϕ + e y ⃗ s i n θ s i n ϕ + e z ⃗ c o s θ \vec{e_r}=\vec{e_x}sin\theta cos\phi+\vec{e_y}sin\theta sin\phi+\vec{e_z}cos\theta er=exsinθcosϕ+eysinθsinϕ+ezcosθ
-
R ⃗ = e ⃗ ⋅ r \vec{R}=\vec{e}·r R=e⋅r
-
e
ϕ
⃗
=
−
e
x
⃗
s
i
n
ϕ
+
e
y
⃗
c
o
s
ϕ
\vec{e_{\phi}}=\vec{-e_x}sin\phi +\vec{e_y}cos\phi
eϕ=−exsinϕ+eycosϕ
-
e θ ⃗ = e x ⃗ c o s θ c o s ϕ + e y ⃗ c o s θ s i n ϕ − e z ⃗ s i n θ \vec{e_{\theta}}=\vec{e_x}cos\theta cos\phi+\vec{e_y}cos\theta sin\phi-\vec{e_z}sin\theta eθ=excosθcosϕ+eycosθsinϕ−ezsinθ
-
圆柱坐标系与球面坐标系
r = ρ 2 + z 2 , θ = t a n − 1 ( ρ z ) r=\sqrt{\rho^2+z^2},\theta=tan^{-1}(\frac{\rho}{z}) r=ρ2+z2,θ=tan−1(zρ)
三、标量场
等值面
- u=u® (标量函数)
等值面方程
u ( r ) = ∫ ▽ u ⋅ d l + C u(r)=\int \bigtriangledown u·dl+C u(r)=∫▽u⋅dl+C
方向导数
∂ u ∂ l = ∂ u ∂ x c o s α + ∂ u ∂ y c o s β + ∂ u ∂ z c o s γ \frac{\partial u}{\partial l}=\frac{\partial u}{\partial x}cos\alpha+\frac{\partial u}{\partial y}cos\beta+\frac{\partial u}{\partial z}cos\gamma ∂l∂u=∂x∂ucosα+∂y∂ucosβ+∂z∂ucosγ
- 三个余弦分别是方向l的方向余弦
梯度
▽ u = e x ⃗ ∂ u ∂ x + e y ⃗ ∂ u ∂ y + e z ⃗ ∂ u ∂ z \bigtriangledown u=\vec{e_x}\frac{\partial u}{\partial x}+\vec{e_y}\frac{\partial u}{\partial y}+\vec{e_z}\frac{\partial u}{\partial z} ▽u=ex∂x∂u+ey∂y∂u+ez∂z∂u
▽ u = e ρ ⃗ ∂ u ∂ l ρ + e ϕ ⃗ ∂ u ∂ l ϕ + e z ⃗ ∂ u ∂ z \bigtriangledown u=\vec{e_\rho}\frac{\partial u}{\partial l_\rho}+\vec{e_\phi}\frac{\partial u}{\partial l_\phi}+\vec{e_z}\frac{\partial u}{\partial z} ▽u=eρ∂lρ∂u+eϕ∂lϕ∂u+ez∂z∂u
▽ u = e r ⃗ ∂ u ∂ r + e θ ⃗ ∂ u ∂ l θ + e ϕ ⃗ ∂ u ∂ l ϕ \bigtriangledown u=\vec{e_r}\frac{\partial u}{\partial r}+\vec{e_\theta}\frac{\partial u}{\partial l_\theta}+\vec{e_\phi}\frac{\partial u}{\partial l_\phi} ▽u=er∂r∂u+eθ∂lθ∂u+eϕ∂lϕ∂u
-
总结
▽
×
▽
u
≡
0
\bigtriangledown× \bigtriangledown u \equiv 0
▽×▽u≡0
- 标量场u®中每一点的梯度垂直于过该点的等值面,且指向u®增加的方向
四、矢量场
矢量线
F ⃗ = F ⃗ ( r ⃗ ) = e x ⃗ F x ( r ⃗ ) + e y ⃗ F y ( r ⃗ ) + e z ⃗ F z ( r ⃗ ) \vec{F}=\vec{F}(\vec{r})=\vec{e_x}F_x(\vec{r})+\vec{e_y}F_y(\vec{r})+\vec{e_z}F_z(\vec{r}) F=F(r)=exFx(r)+eyFy(r)+ezFz(r)
-
微分方程
d x F x ( r ⃗ ) = d y F y ( r ⃗ ) = d z F z ( r ⃗ ) \frac{dx}{F_x(\vec{r})}=\frac{dy}{F_y(\vec{r})}=\frac{dz}{F_z(\vec{r})} Fx(r)dx=Fy(r)dy=Fz(r)dz
通量
-
定义
- 矢量场F®穿出闭合面S的通量
ψ = ∮ S F ⃗ ( r ⃗ ) d S ⃗ = ∮ S F ⃗ ( r ⃗ ) e n ⃗ d S \psi=\oint_S \vec{F}(\vec{r})d\vec{S}=\oint_S\vec{F}(\vec{r})\vec{e_n}\quad dS ψ=∮SF(r)dS=∮SF(r)endS
散度
- 矢量场的散度标量函数
▽ F ⃗ = ∂ F x ∂ x + ∂ F y ∂ y + ∂ F z ∂ z \bigtriangledown \vec F=\frac{\partial F_x}{\partial x}+\frac{\partial F_y}{\partial y}+\frac{\partial F_z}{\partial z} ▽F=∂x∂Fx+∂y∂Fy+∂z∂Fz
▽ F ⃗ = 1 ρ ∂ ( ρ F ρ ) ∂ ρ + 1 ρ ∂ F ϕ ∂ ϕ + ∂ F z ∂ z \bigtriangledown \vec F=\frac{1}{\rho}\frac{\partial (\rho F_\rho)}{\partial \rho}+\frac{1}{\rho}\frac{\partial F_\phi}{\partial \phi}+\frac{\partial F_z}{\partial z} ▽F=ρ1∂ρ∂(ρFρ)+ρ1∂ϕ∂Fϕ+∂z∂Fz
▽ F ⃗ = 1 r 2 ∂ ( r 2 F r ) ∂ r + 1 r s i n θ ∂ ( s i n θ F θ ) ∂ θ + 1 r s i n θ ∂ F ϕ ∂ ϕ \bigtriangledown \vec F=\frac{1}{r^2}\frac{\partial (r^2 F_r)}{\partial r}+\frac{1}{rsin\theta}\frac{\partial (sin\theta F_\theta)}{\partial \theta}+\frac{1}{rsin\theta}\frac{\partial F_\phi}{\partial \phi} ▽F=r21∂r∂(r2Fr)+rsinθ1∂θ∂(sinθFθ)+rsinθ1∂ϕ∂Fϕ
-
散度定理
∫ V ▽ F ⃗ d V ⃗ = ∮ S F ⃗ d S ⃗ \int_V\bigtriangledown \vec{F} d \vec V=\oint_S\vec{F}d\vec S ∫V▽FdV=∮SFdS
-
无源场(管形场)
▽
F
⃗
≡
0
\bigtriangledown\vec{F}\equiv 0
▽F≡0
- 特点
- 不存在通量源
环流
F ⃗ ( r ⃗ ) 沿 闭 合 路 径 C 的 环 流 = Γ = ∮ C F ⃗ d l ⃗ \vec F(\vec r)沿闭合路径C的环流=\Gamma=\oint_C \vec Fd \vec l F(r)沿闭合路径C的环流=Γ=∮CFdl
旋度
- 矢量场的旋度是矢量函数
KaTeX parse error: Undefined control sequence: \ at position 28: …edown×\vec{F}= \̲ ̲\left|\begin{ar…
KaTeX parse error: Undefined control sequence: \ at position 42: … \frac{1}{\rho}\̲ ̲\left|\begin{ar…
KaTeX parse error: Undefined control sequence: \ at position 50: …}{r^2sin\theta}\̲ ̲\left|\begin{ar…
-
性质
▽
⋅
(
▽
×
A
⃗
)
=
0
(
A
⃗
:
矢
量
函
数
)
\bigtriangledown ·(\bigtriangledown×\vec A)=0(\vec A:矢量函数)
▽⋅(▽×A)=0(A:矢量函数)
- 无旋场(保守场)
-
▽
×
F
⃗
≡
0
\bigtriangledown×\vec{F}\equiv 0
▽×F≡0
- 特点
- 不存在漩涡源
斯托克斯定理
∫ S ▽ × F ⃗ d S ⃗ = ∮ C F ⃗ d l ⃗ \int_S \bigtriangledown×\vec F d\vec S=\oint_C \vec F d\vec l ∫S▽×FdS=∮CFdl
无散场
-
定义
- 散度处处为0的矢量场
若 ▽ ⋅ F ⃗ = 0 , 则 F ⃗ = ▽ × A ⃗ 若\bigtriangledown · \vec F=0,则\vec{F}=\bigtriangledown×\vec A 若▽⋅F=0,则F=▽×A
哈密尔顿算子
▽ = ∂ ∂ x e x ⃗ + ∂ ∂ y e y ⃗ + ∂ ∂ z e z ⃗ \bigtriangledown = \frac{\partial}{\partial x}\vec{e_x}+\frac{\partial}{\partial y}\vec{e_y}+\frac{\partial}{\partial z}\vec{e_z} ▽=∂x∂ex+∂y∂ey+∂z∂ez
拉普拉斯运算
▽ 2 u = ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u ∂ z 2 \bigtriangledown ^2u=\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}+\frac{\partial^2u}{\partial z^2} ▽2u=∂x2∂2u+∂y2∂2u+∂z2∂2u
▽ 2 u = 1 ρ ∂ ( ρ ∂ u ∂ ρ ) ∂ ρ + 1 ρ 2 ∂ 2 u ∂ ϕ 2 + ∂ 2 u ∂ z 2 \bigtriangledown ^2u=\frac{1}{\rho}\frac{\partial(\rho\frac{\partial u}{\partial \rho})}{\partial \rho}+\frac{1}{\rho^2}\frac{\partial^2u}{\partial \phi^2}+\frac{\partial^2u}{\partial z^2} ▽2u=ρ1∂ρ∂(ρ∂ρ∂u)+ρ21∂ϕ2∂2u+∂z2∂2u
▽ 2 u = 1 r 2 ∂ ( r 2 ∂ u ∂ r ) ∂ r + 1 r 2 s i n θ ∂ ( s i n θ ∂ u ∂ θ ) ∂ θ + 1 r 2 s i n 2 θ ∂ 2 u ∂ ϕ 2 \bigtriangledown ^2u=\frac{1}{r^2}\frac{\partial(r^2\frac{\partial u}{\partial r})}{\partial r}+\frac{1}{r^2sin\theta}\frac{\partial(sin\theta\frac{\partial u}{\partial \theta})}{\partial \theta}+\frac{1}{r^2sin^2\theta}\frac{\partial^2u}{\partial \phi^2} ▽2u=r21∂r∂(r2∂r∂u)+r2sinθ1∂θ∂(sinθ∂θ∂u)+r2sin2θ1∂ϕ2∂2u
格林定理
格林第一定理(格林第一恒等式)
∫ V ( ϕ ▽ 2 ψ + ▽ ϕ ⋅ ▽ ψ ) d V = ∮ S ϕ ∂ ψ ∂ n d S \int_V(\phi \bigtriangledown^2 \psi+\bigtriangledown\phi·\bigtriangledown \psi)dV=\oint_S\phi \frac{\partial\psi}{\partial n}dS ∫V(ϕ▽2ψ+▽ϕ⋅▽ψ)dV=∮Sϕ∂n∂ψdS
格林第二定理(格林第二恒等式)
∫ V ( ϕ ▽ 2 ψ − ψ ▽ 2 ϕ ) d V = ∮ S ( ϕ ∂ ψ ∂ n − ψ ∂ ϕ ∂ n ) d S \int_V(\phi \bigtriangledown^2 \psi-\psi\bigtriangledown^2\phi)dV=\oint_S(\phi \frac{\partial\psi}{\partial n}-\psi\frac{\partial \phi}{\partial n})dS ∫V(ϕ▽2ψ−ψ▽2ϕ)dV=∮S(ϕ∂n∂ψ−ψ∂n∂ϕ)dS
亥姆霍兹定理
F ⃗ ( r ⃗ ) = − ▽ u ( r ⃗ ) + ▽ × A ⃗ ( r ⃗ ) \vec F(\vec r)=-\bigtriangledown u(\vec r)+\bigtriangledown × \vec A(\vec r) F(r)=−▽u(r)+▽×A(r)