电磁场Chapter 1矢量分析

Chapter 1矢量分析

一、矢量代数

A ⃗ ⋅ B ⃗ = A B c o s θ \vec{A}·\vec{B}=ABcos\theta A B =ABcosθ

  • 标量

A ⃗ × B ⃗ = e n ⃗ A B s i n θ \vec{A}×\vec{B}=\vec{e_n}ABsin\theta A ×B =en ABsinθ

  • 矢量

标量三重积

A ⃗ ⋅ ( B ⃗ × C ⃗ ) = B ⃗ ⋅ ( C ⃗ × A ⃗ ) = C ⃗ ⋅ ( A ⃗ × B ⃗ ) \vec{A}·(\vec{B}×\vec{C})=\vec{B}·(\vec{C}×\vec{A})=\vec{C}·(\vec{A}×\vec{B}) A (B ×C )=B (C ×A )=C (A ×B )

矢量三重积

A ⃗ × ( B ⃗ × C ⃗ ) = B ⃗ ⋅ ( A ⃗ ⋅ C ⃗ ) − C ⃗ ⋅ ( A ⃗ × B ⃗ ) \vec{A}×(\vec{B}×\vec{C})=\vec{B}·(\vec{A}·\vec{C})-\vec{C}·(\vec{A}×\vec{B}) A ×(B ×C )=B (A C )C (A ×B )

二、正交坐标系

直角坐标系(x,y,z)

  • 右手螺旋法则

e x ⃗ ⋅ e y ⃗ = e z ⃗ \vec{e_x}·\vec{e_y}=\vec{e_z} ex ey =ez
-

e y ⃗ ⋅ e z ⃗ = e x ⃗ \vec{e_y}·\vec{e_z}=\vec{e_x} ey ez =ex
-

e z ⃗ ⋅ e x ⃗ = e y ⃗ \vec{e_z}·\vec{e_x}=\vec{e_y} ez ex =ey

  • 长度元

d l x = d x , d l y = d y , d l z = d z dl_x=dx,dl_y=dy,dl_z=dz dlx=dx,dly=dy,dlz=dz

  • 面积元

d S x = d l y ⋅ d l z dS_x=dl_y·dl_z dSx=dlydlz
- S_y、S_z同理

  • 体积元

d V = d l x ⋅ d l y ⋅ d l z dV=dl_x·dl_y·dl_z dV=dlxdlydlz

圆柱坐标系

( ρ , ϕ , z ) (\rho,\phi,z) (ρ,ϕ,z)

  • 右手螺旋法则

    • 类似直角坐标系
  • 长度元

d l ρ = d ρ dl_{\rho}=d\rho dlρ=dρ
-

d l ϕ = ρ d ϕ dl_{\phi}=\rho d{\phi} dlϕ=ρdϕ
-

d l z = d z dl_z=dz dlz=dz

  • 面积元

    • 两两长度元之积
  • 体积元

    • 长度元之积

球坐标系

( r , θ , ϕ ) (r,\theta,\phi) (r,θ,ϕ)

  • 右手螺旋法则

    • 类似直角坐标系
  • 长度元

d l r = d r dl_r=dr dlr=dr
-

d l θ = r d θ dl_{\theta}=r d{\theta} dlθ=rdθ
-

d l ϕ = r s i n θ d ϕ dl_{\phi}=rsin\theta d{\phi} dlϕ=rsinθdϕ

  • 面积元

    • 两两长度元之积
  • 体积元

    • 长度元之积

坐标转换

  • 圆柱坐标系与直角坐标系

e r ⃗ = e x ⃗ c o s ϕ + e y ⃗ s i n ϕ \vec{e_r}=\vec{e_x}cos\phi+\vec{e_y}sin\phi er =ex cosϕ+ey sinϕ
-

e ϕ ⃗ = − e x ⃗ s i n ϕ + e y ⃗ c o s ϕ \vec{e_{\phi}}=\vec{-e_x}sin\phi+\vec{e_y}cos\phi eϕ =ex sinϕ+ey cosϕ
- z的一样
-

x = ρ c o s ϕ , y = ρ s i n ϕ x=\rho cos\phi,y=\rho sin\phi x=ρcosϕ,y=ρsinϕ

  • 球面坐标系与直角坐标系

e r ⃗ = e x ⃗ s i n θ c o s ϕ + e y ⃗ s i n θ s i n ϕ + e z ⃗ c o s θ \vec{e_r}=\vec{e_x}sin\theta cos\phi+\vec{e_y}sin\theta sin\phi+\vec{e_z}cos\theta er =ex sinθcosϕ+ey sinθsinϕ+ez cosθ

	- 

R ⃗ = e ⃗ ⋅ r \vec{R}=\vec{e}·r R =e r

- 

e ϕ ⃗ = − e x ⃗ s i n ϕ + e y ⃗ c o s ϕ \vec{e_{\phi}}=\vec{-e_x}sin\phi +\vec{e_y}cos\phi eϕ =ex sinϕ+ey cosϕ
-

e θ ⃗ = e x ⃗ c o s θ c o s ϕ + e y ⃗ c o s θ s i n ϕ − e z ⃗ s i n θ \vec{e_{\theta}}=\vec{e_x}cos\theta cos\phi+\vec{e_y}cos\theta sin\phi-\vec{e_z}sin\theta eθ =ex cosθcosϕ+ey cosθsinϕez sinθ

  • 圆柱坐标系与球面坐标系

r = ρ 2 + z 2 , θ = t a n − 1 ( ρ z ) r=\sqrt{\rho^2+z^2},\theta=tan^{-1}(\frac{\rho}{z}) r=ρ2+z2 ,θ=tan1(zρ)

三、标量场

等值面

  • u=u® (标量函数)

等值面方程

u ( r ) = ∫ ▽ u ⋅ d l + C u(r)=\int \bigtriangledown u·dl+C u(r)=udl+C

方向导数

∂ u ∂ l = ∂ u ∂ x c o s α + ∂ u ∂ y c o s β + ∂ u ∂ z c o s γ \frac{\partial u}{\partial l}=\frac{\partial u}{\partial x}cos\alpha+\frac{\partial u}{\partial y}cos\beta+\frac{\partial u}{\partial z}cos\gamma lu=xucosα+yucosβ+zucosγ

- 三个余弦分别是方向l的方向余弦

梯度

▽ u = e x ⃗ ∂ u ∂ x + e y ⃗ ∂ u ∂ y + e z ⃗ ∂ u ∂ z \bigtriangledown u=\vec{e_x}\frac{\partial u}{\partial x}+\vec{e_y}\frac{\partial u}{\partial y}+\vec{e_z}\frac{\partial u}{\partial z} u=ex xu+ey yu+ez zu

▽ u = e ρ ⃗ ∂ u ∂ l ρ + e ϕ ⃗ ∂ u ∂ l ϕ + e z ⃗ ∂ u ∂ z \bigtriangledown u=\vec{e_\rho}\frac{\partial u}{\partial l_\rho}+\vec{e_\phi}\frac{\partial u}{\partial l_\phi}+\vec{e_z}\frac{\partial u}{\partial z} u=eρ lρu+eϕ lϕu+ez zu

▽ u = e r ⃗ ∂ u ∂ r + e θ ⃗ ∂ u ∂ l θ + e ϕ ⃗ ∂ u ∂ l ϕ \bigtriangledown u=\vec{e_r}\frac{\partial u}{\partial r}+\vec{e_\theta}\frac{\partial u}{\partial l_\theta}+\vec{e_\phi}\frac{\partial u}{\partial l_\phi} u=er ru+eθ lθu+eϕ lϕu

  • 总结

▽ × ▽ u ≡ 0 \bigtriangledown× \bigtriangledown u \equiv 0 ×u0
- 标量场u®中每一点的梯度垂直于过该点的等值面,且指向u®增加的方向

四、矢量场

矢量线

F ⃗ = F ⃗ ( r ⃗ ) = e x ⃗ F x ( r ⃗ ) + e y ⃗ F y ( r ⃗ ) + e z ⃗ F z ( r ⃗ ) \vec{F}=\vec{F}(\vec{r})=\vec{e_x}F_x(\vec{r})+\vec{e_y}F_y(\vec{r})+\vec{e_z}F_z(\vec{r}) F =F (r )=ex Fx(r )+ey Fy(r )+ez Fz(r )

  • 微分方程

d x F x ( r ⃗ ) = d y F y ( r ⃗ ) = d z F z ( r ⃗ ) \frac{dx}{F_x(\vec{r})}=\frac{dy}{F_y(\vec{r})}=\frac{dz}{F_z(\vec{r})} Fx(r )dx=Fy(r )dy=Fz(r )dz

通量

  • 定义

    • 矢量场F®穿出闭合面S的通量

ψ = ∮ S F ⃗ ( r ⃗ ) d S ⃗ = ∮ S F ⃗ ( r ⃗ ) e n ⃗ d S \psi=\oint_S \vec{F}(\vec{r})d\vec{S}=\oint_S\vec{F}(\vec{r})\vec{e_n}\quad dS ψ=SF (r )dS =SF (r )en dS

散度

  • 矢量场的散度标量函数

▽ F ⃗ = ∂ F x ∂ x + ∂ F y ∂ y + ∂ F z ∂ z \bigtriangledown \vec F=\frac{\partial F_x}{\partial x}+\frac{\partial F_y}{\partial y}+\frac{\partial F_z}{\partial z} F =xFx+yFy+zFz

▽ F ⃗ = 1 ρ ∂ ( ρ F ρ ) ∂ ρ + 1 ρ ∂ F ϕ ∂ ϕ + ∂ F z ∂ z \bigtriangledown \vec F=\frac{1}{\rho}\frac{\partial (\rho F_\rho)}{\partial \rho}+\frac{1}{\rho}\frac{\partial F_\phi}{\partial \phi}+\frac{\partial F_z}{\partial z} F =ρ1ρ(ρFρ)+ρ1ϕFϕ+zFz

▽ F ⃗ = 1 r 2 ∂ ( r 2 F r ) ∂ r + 1 r s i n θ ∂ ( s i n θ F θ ) ∂ θ + 1 r s i n θ ∂ F ϕ ∂ ϕ \bigtriangledown \vec F=\frac{1}{r^2}\frac{\partial (r^2 F_r)}{\partial r}+\frac{1}{rsin\theta}\frac{\partial (sin\theta F_\theta)}{\partial \theta}+\frac{1}{rsin\theta}\frac{\partial F_\phi}{\partial \phi} F =r21r(r2Fr)+rsinθ1θ(sinθFθ)+rsinθ1ϕFϕ

  • 散度定理

∫ V ▽ F ⃗ d V ⃗ = ∮ S F ⃗ d S ⃗ \int_V\bigtriangledown \vec{F} d \vec V=\oint_S\vec{F}d\vec S VF dV =SF dS

  • 无源场(管形场)

▽ F ⃗ ≡ 0 \bigtriangledown\vec{F}\equiv 0 F 0
- 特点

	- 不存在通量源

环流

F ⃗ ( r ⃗ ) 沿 闭 合 路 径 C 的 环 流 = Γ = ∮ C F ⃗ d l ⃗ \vec F(\vec r)沿闭合路径C的环流=\Gamma=\oint_C \vec Fd \vec l F (r )沿C=Γ=CF dl

旋度

  • 矢量场的旋度是矢量函数

KaTeX parse error: Undefined control sequence: \ at position 28: …edown×\vec{F}= \̲ ̲\left|\begin{ar…

KaTeX parse error: Undefined control sequence: \ at position 42: … \frac{1}{\rho}\̲ ̲\left|\begin{ar…

KaTeX parse error: Undefined control sequence: \ at position 50: …}{r^2sin\theta}\̲ ̲\left|\begin{ar…

  • 性质

▽ ⋅ ( ▽ × A ⃗ ) = 0 ( A ⃗ : 矢 量 函 数 ) \bigtriangledown ·(\bigtriangledown×\vec A)=0(\vec A:矢量函数) (×A )=0A
- 无旋场(保守场)

	- 

▽ × F ⃗ ≡ 0 \bigtriangledown×\vec{F}\equiv 0 ×F 0
- 特点

		- 不存在漩涡源

斯托克斯定理

∫ S ▽ × F ⃗ d S ⃗ = ∮ C F ⃗ d l ⃗ \int_S \bigtriangledown×\vec F d\vec S=\oint_C \vec F d\vec l S×F dS =CF dl

无散场

  • 定义

    • 散度处处为0的矢量场

若 ▽ ⋅ F ⃗ = 0 , 则 F ⃗ = ▽ × A ⃗ 若\bigtriangledown · \vec F=0,则\vec{F}=\bigtriangledown×\vec A F =0,F =×A

哈密尔顿算子

▽ = ∂ ∂ x e x ⃗ + ∂ ∂ y e y ⃗ + ∂ ∂ z e z ⃗ \bigtriangledown = \frac{\partial}{\partial x}\vec{e_x}+\frac{\partial}{\partial y}\vec{e_y}+\frac{\partial}{\partial z}\vec{e_z} =xex +yey +zez

拉普拉斯运算

▽ 2 u = ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u ∂ z 2 \bigtriangledown ^2u=\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}+\frac{\partial^2u}{\partial z^2} 2u=x22u+y22u+z22u

▽ 2 u = 1 ρ ∂ ( ρ ∂ u ∂ ρ ) ∂ ρ + 1 ρ 2 ∂ 2 u ∂ ϕ 2 + ∂ 2 u ∂ z 2 \bigtriangledown ^2u=\frac{1}{\rho}\frac{\partial(\rho\frac{\partial u}{\partial \rho})}{\partial \rho}+\frac{1}{\rho^2}\frac{\partial^2u}{\partial \phi^2}+\frac{\partial^2u}{\partial z^2} 2u=ρ1ρ(ρρu)+ρ21ϕ22u+z22u

▽ 2 u = 1 r 2 ∂ ( r 2 ∂ u ∂ r ) ∂ r + 1 r 2 s i n θ ∂ ( s i n θ ∂ u ∂ θ ) ∂ θ + 1 r 2 s i n 2 θ ∂ 2 u ∂ ϕ 2 \bigtriangledown ^2u=\frac{1}{r^2}\frac{\partial(r^2\frac{\partial u}{\partial r})}{\partial r}+\frac{1}{r^2sin\theta}\frac{\partial(sin\theta\frac{\partial u}{\partial \theta})}{\partial \theta}+\frac{1}{r^2sin^2\theta}\frac{\partial^2u}{\partial \phi^2} 2u=r21r(r2ru)+r2sinθ1θ(sinθθu)+r2sin2θ1ϕ22u

格林定理

格林第一定理(格林第一恒等式)

∫ V ( ϕ ▽ 2 ψ + ▽ ϕ ⋅ ▽ ψ ) d V = ∮ S ϕ ∂ ψ ∂ n d S \int_V(\phi \bigtriangledown^2 \psi+\bigtriangledown\phi·\bigtriangledown \psi)dV=\oint_S\phi \frac{\partial\psi}{\partial n}dS V(ϕ2ψ+ϕψ)dV=SϕnψdS

格林第二定理(格林第二恒等式)

∫ V ( ϕ ▽ 2 ψ − ψ ▽ 2 ϕ ) d V = ∮ S ( ϕ ∂ ψ ∂ n − ψ ∂ ϕ ∂ n ) d S \int_V(\phi \bigtriangledown^2 \psi-\psi\bigtriangledown^2\phi)dV=\oint_S(\phi \frac{\partial\psi}{\partial n}-\psi\frac{\partial \phi}{\partial n})dS V(ϕ2ψψ2ϕ)dV=S(ϕnψψnϕ)dS

亥姆霍兹定理

F ⃗ ( r ⃗ ) = − ▽ u ( r ⃗ ) + ▽ × A ⃗ ( r ⃗ ) \vec F(\vec r)=-\bigtriangledown u(\vec r)+\bigtriangledown × \vec A(\vec r) F (r )=u(r )+×A (r )

习题

尚未补充

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值