329. 矩阵中的最长递增路径 - 力扣(LeetCode) (leetcode-cn.com)
先看数据范围
m == matrix.length
n == matrix[i].length
1 <= m, n <= 200
0 <= matrix[i][j] <= 231 - 1
可以看出可以用带备忘录的dfs
算法:dfs
思路首先要依次的遍历矩阵,尝试着从不同的入口进入搜索
for(int i=0;i<matrixSize;i++)
{
for(int j=0;j<matrixColSize[0];j++)
{
m=dfs(i,j,-1,matrixSize,matrixColSize[0],matrix);//依次遍历入口
}
}
因为递归时间复杂度太高所以就要用带备忘录的dfs,定义一个备忘录a也是个二维数组和地图对应。
在将a数组全初始化为-1,再将查找到的长度保存在对应的数组下标x,y。
深搜要搜索四个方向,上下左右然后再找到上下左右之间的最大的长度,然后再保存到a数组中
int max(int a,int b)
{
return a>b?a:b;
}
int dfs(int x,int y,int val,int size,int col,int**w,int a[201][201])
{
if(x<0||y<0||x>=size||y>=col||val>=w[x][y])//判断是否走出边界,val表示的是前一个数
{
return 0;
}
if(a[x][y]!=-1) //如果a数组中有值就直接返回
{
return a[x][y];
}
int l=dfs(x-1,y,w[x][y],size,col,w,a); //左
int r=dfs(x+1,y,w[x][y],size,col,w,a); //右
int u=dfs(x,y-1,w[x][y],size,col,w,a); //上
int d=dfs(x,y+1,w[x][y],size,col,w,a); //下
l=max(l,r);//找到四个方向的最大值
u=max(u,d);
l=max(l,u);
a[x][y]=l+1; //将最大值保存在a中
return a[x][y];
}
int longestIncreasingPath(int** matrix, int matrixSize, int* matrixColSize){
int a[201][201]; //定义的备忘录
int m,n=0;
memset(a,-1,sizeof(int)*201*201);//将数组a中的内容全部初始化为-1
for(int i=0;i<matrixSize;i++)
{
for(int j=0;j<matrixColSize[0];j++)
{
m=dfs(i,j,-1,matrixSize,matrixColSize[0],matrix,a); //调用dfs函数暴搜
n=max(n,m); 找到搜索后的最大值
}
}
return n;
}