leetcode329. 矩阵中的最长递增路径

329. 矩阵中的最长递增路径 - 力扣(LeetCode) (leetcode-cn.com)

先看数据范围

m == matrix.length
n == matrix[i].length
1 <= m, n <= 200
0 <= matrix[i][j] <= 231 - 1

可以看出可以用带备忘录的dfs

算法:dfs

思路首先要依次的遍历矩阵,尝试着从不同的入口进入搜索

for(int i=0;i<matrixSize;i++)
{
    for(int j=0;j<matrixColSize[0];j++)
    {
        m=dfs(i,j,-1,matrixSize,matrixColSize[0],matrix);//依次遍历入口
    }
}

因为递归时间复杂度太高所以就要用带备忘录的dfs,定义一个备忘录a也是个二维数组和地图对应。

在将a数组全初始化为-1,再将查找到的长度保存在对应的数组下标x,y。

深搜要搜索四个方向,上下左右然后再找到上下左右之间的最大的长度,然后再保存到a数组中

int max(int a,int b)
{
    return a>b?a:b;
}
int dfs(int x,int y,int val,int size,int col,int**w,int a[201][201])
{
   if(x<0||y<0||x>=size||y>=col||val>=w[x][y])//判断是否走出边界,val表示的是前一个数
   {
       return 0;
   }
    if(a[x][y]!=-1)   //如果a数组中有值就直接返回
    {
        return a[x][y];
    }
   int l=dfs(x-1,y,w[x][y],size,col,w,a);  //左
   int r=dfs(x+1,y,w[x][y],size,col,w,a);  //右
   int u=dfs(x,y-1,w[x][y],size,col,w,a);  //上
   int d=dfs(x,y+1,w[x][y],size,col,w,a);  //下
   l=max(l,r);//找到四个方向的最大值
   u=max(u,d);
   l=max(l,u);
   a[x][y]=l+1; //将最大值保存在a中
   return a[x][y];
}

int longestIncreasingPath(int** matrix, int matrixSize, int* matrixColSize){
int a[201][201];  //定义的备忘录
int m,n=0;        
memset(a,-1,sizeof(int)*201*201);//将数组a中的内容全部初始化为-1
for(int i=0;i<matrixSize;i++)
{
    for(int j=0;j<matrixColSize[0];j++)
    {
        m=dfs(i,j,-1,matrixSize,matrixColSize[0],matrix,a); //调用dfs函数暴搜
        n=max(n,m);  找到搜索后的最大值
    }
}
return n;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值