题目:
Pasha and Stick
Time Limit:1000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u
Description
Pasha has a wooden stick of some positive integer length n. He wants to perform exactly three cuts to get four parts of the stick. Each part must have some positive integer length and the sum of these lengths will obviously be n.
Pasha likes rectangles but hates squares, so he wonders, how many ways are there to split a stick into four parts so that it’s possible to form a rectangle using these parts, but is impossible to form a square.
Your task is to help Pasha and count the number of such ways. Two ways to cut the stick are considered distinct if there exists some integer x, such that the number of parts of length x in the first way differ from the number of parts of length x in the second way.
Input
The first line of the input contains a positive integer n (1 ≤ n ≤ 2*10e9) — the length of Pasha’s stick.
Output
The output should contain a single integer — the number of ways to split Pasha’s stick into four parts of positive integer length so that it’s possible to make a rectangle by connecting the ends of these parts, but is impossible to form a square.
Sample Input
Input
6
Output
1
Input
20
Output
4
Hint
There is only one way to divide the stick in the first sample {1, 1, 2, 2}.
Four ways to divide the stick in the second sample are {1, 1, 9, 9}, {2, 2, 8, 8}, {3, 3, 7, 7} and {4, 4, 6, 6}. Note that {5, 5, 5, 5} doesn’t work.
题意:
将一根长为n的长木棒,切三刀,得到四段整数短木棒,问能组成几种不同长和宽的长方形。
思路:
刚开始没看数据范围,直接TLE了一发,然后改进成O(n/2),TLE, 然后改成O(n/4),WA,然后我发现漏了判断棍棒是否能围成长方形,然后过了
#include <iostream>
using namespace std;
int main(){
long long n;
while(cin>>n){
int cnt = 0;
if(n%2!=0){
cout<<0<<endl;
continue;
}
for(int i=1; i<=n/4; i++){
int len = n/2-i;
int check = n/2-i-len;
if(check==0 && len!=i &&len>0){
cnt++;
}
}
cout<<cnt<<endl;
}
return 0;
}