小和问题:
在一个数组中,每一个数左边比右边的数小的数累加起来,叫做这个数组的小和
例子:
[1,3,4,2,5]
1左边比1小的数,没有:
3左边比3小的数,1;
4左边比4小的数,1,3;
2左边比2小的数,1;
5左边比5小的数,1,3,4,2;
所以小和为1+1+3+1+1+3+4+2=16;
1.常规求解:
两个for循环,每次取出对应的值,遍历比较,O(n^2)
2.逆向求解,可以求比自己i大的数m,即自己i出现的次数为(i*m),可以使用递归分治求解,递归的过程中顺便排序
第一次:[1],[3],1出现的次数1(比1大的有3,所以有一个1)
第二次:[1,3],[4],1出现1次,3出现1次
第三次:[2],[5],2出现1次
第四次:[1,3,4],[2,5],1出现2次,3出现1次,4出现1次
总共1+1+3+1+2+1+3+4=16;
代码同归并差不多
public static int smallSum(int[] arr) {
if (arr == null || arr.length < 2) {
return 0;
}
return mergeSort(arr, 0, arr.length - 1);
}
public static int mergeSort(int[] arr, int l, int r) {
if (l == r) {
return 0;
}
int mid = l + ((r - l) >> 1);
return mergeSort(arr, l, mid) + mergeSort(arr, mid + 1, r) + merge(arr, l, mid, r);
}
public static int merge(int[] arr, int l, int m, int r) {
int[] help = new int[r - l + 1];
int i = 0;
int p1 = l;
int p2 = m + 1;
int res = 0;
while (p1 <= m && p2 <= r) {
res += arr[p1] < arr[p2] ? (r - p2 + 1) * arr[p1] : 0;//每次只比对自己的数组同右边的数组,找到自己出现的次数
help[i++] = arr[p1] < arr[p2] ? arr[p1++] : arr[p2++];
}
while (p1 <= m) {
help[i++] = arr[p1++];
}
while (p2 <= r) {
help[i++] = arr[p2++];
}
for (i = 0; i < help.length; i++) {
arr[l + i] = help[i];
}
return res;
}