【动态规划】背包问题(0-1背包 完全背包)

目录

1、背包问题1——背包无价值

 2、背包问题Ⅱ——背包有价值

3、背包问题Ⅲ——完全背包问题


Note: 本文主要从动态规划的一维、二维情况讲解了背包问题,主要记录了自己的理解过程

 

1、背包问题1——背包无价值

Lintcode 92题 https://www.lintcode.com/problem/backpack/description

在n个物品中挑选若干物品装入背包,最多能装多满?假设背包的大小为m,每个物品的大小为A[i]

样例 :
    输入:  [3,4,8,5], backpack size=10
    输出:  9

解析:
    动态规划二维dp

    递推公式:dp[i][j] = max(dp[i-1][j-A[i]]+ A[i], dp[i-1][j]    其中i => 0 ~ n, j => 0 ~ m+1

    dp[i][j]:前i个物品放入容量为j的背包的最大重量;

    dp[i-1][ j-A[i] ] + A[i]:放入第i个物品时的重量;

    其中i-1为上一个物品, j-A[i] 表示当前容量j - 当前物品重量A[i] 时背包所能容纳物品的重量;

    dp[i-1][j]:不放第i个时的重量;

    动态规划一维dp

    递推公式:dp[j] = max(dp[j-A[i]], dp[j]) j => m ~ A[i] 倒序,每个物品不重复计算

二维动态规划 

def backpack(m, A):
    n = len(A)
    if n <= 0 or m <= 0:
        return 0
    # 行 m+1, 列 len(A)
    dp = [[0]*(m + 1) for _ in range(n)]
    # 初始化dp首行, A[0]为第一个物品的重量, i从0~m+1表示当前背包容量i
    # A[0] < i 表示当前背包容量能放入A[0]
    for i in range(m+1):
        if A[0] <= i:
            dp[0][i] = A[0]

    for i in range(1, n):
        for j in range(1, m+1):
            if A[i] > j: # 当前物品的重量大于背包的容量, 则取i-1之前的最大重量
                dp[i][j] = dp[i-1][j]
            else:
                dp[i][j] = max(dp[i-1][j-A[i]] + A[i], dp[i-1][j])
    return dp[-1][-1]

if __name__ == '__main__':
    m = 10
    A = [3, 4, 8, 5]
    print('二维dp ', backpack(m, A))

 二维dp 动态更新过程:

一维动态规划

def backpack(m, A): 
    n = len(A)
    if n <= 0 or m <= 0:
        return 0
    dp = [0] * (m+1)
    # i: 0 ~ n
    for i in range(n):
        # j: m ~ A[i] - 1, 倒序, 每个物品用一次
        for j in range(m, A[i]-1, -1):
            dp[j] = max(dp[j-A[i]] + A[i], dp[j])
    return dp[-1]

if __name__ == '__main__':
    m = 10
    A = [3, 4, 8, 5]
    # 一维dp数组变化过程跟二维一样, 区别一维在原地更新
    print('一维dp ', backpack(m, A))

 2、背包问题Ⅱ——背包有价值

Lintcode 125. 背包问题 II https://www.lintcode.com/problem/backpack-ii/description

有 n 个物品和一个大小为 m 的背包. 给定数组 A 表示每个物品的大小和数组 V 表示每个物品的价值.

问最多能装入背包的总价值是多大?

样例 :

    输入: m = 10, A = [2, 3, 5, 7], V = [1, 5, 2, 4]
    输出: 9
    解释: 装入 A[1] 和 A[3] 可以得到最大价值, V[1] + V[3] = 9

思路同上:

    数组中存放的是当前的最大价值

def backpack1(m, A, V): 
    n = len(A)
    if n <= 0 or m <= 0:
        return 0
    dp = [0] * (m+1)
    for i in range(n):
        for j in range(m, A[i]-1, -1):
            dp[j] = max(dp[j-A[i]] + V[i], dp[j])
    return dp[-1]

def backpack2(m, A, V):
    n = len(A)
    if n <= 0 or m <= 0:
        return 0
    # 行 m+1, 列 len(A)
    dp = [[0]*(m + 1) for _ in range(n)]
    # 初始化 首行
    for i in range(m+1):
        if A[0] <= i:
            dp[0][i] = V[0]

    for i in range(1, n):
        for j in range(1, m+1):
            if A[i] > j: # 当前价值大于总价值, 则取i-1之前的最大价值
                dp[i][j] = dp[i-1][j]
            else:
                dp[i][j] = max(dp[i-1][j-A[i]] + V[i], dp[i-1][j])
    return dp[-1][-1]

if __name__ == '__main__':
    m = 10
    A = [2, 3, 5, 7]
    V = [1, 5, 2, 4]
    print('一维dp ', backpack1(m, A, V))
    print('二维dp ', backpack2(m, A, V))

3、背包问题Ⅲ——完全背包问题

LintCode 440: Backpack III https://www.lintcode.com/problem/backpack-iii/ 需要会员

给定n种大小为Ai和值Vi的物品(每个物品都有无限个可用数量)和一个大小为m的背包。你能放进背包里的最大值是多少?

样例 :
    输入: m = 10, A = [2, 3, 5, 7], V = [1, 5, 2, 4]
    输出: 9
    解释: 装入 A[1] 和 A[3] 可以得到最大价值, V[1] + V[3] = 9

解析:

    每种物品取的上限是 m / A[i]

    动态规划二维dp

    递推公式:dp[i][j] = max(dp[i-1][ j-k*A[i] ]+k*V[i], dp[i-1][j], dp[i][j])  其中 i => 0 ~ n,j => 0 ~ m+1,k => 0 ~ A[i] *k < j

    dp[i][j]:前i个物品放入容量为j的背包的最大价值;

    dp[i-1][ j-k*A[i] ] + k*V[i]:放入第i个物品,数量为k时的当前价值;

    其中i-1为上一个物品, j - k*A[i] 表示当前容量j - 当前k个物品重量A[i] 时背包所能容纳物品的重量; 

    dp[i][j]:等号右边dp[i][j],放入第i个物品,数量为k时的最大价值;

    dp[i-1][j]:不放第i个时的重量;

    动态规划一维dp

    递推公式:dp[j] = max(dp[j-A[i]], dp[j])  j => A[i] ~ m+1 每个物品可重复计算 

 二维动态规划 

def backpack(m, A, V):
    n = len(A)
    if n <= 0 or m <= 0:
        return 0
    # 行 m+1, 列 len(A)
    dp = [[0]*(m + 1) for _ in range(n)]
    # 初始化首行, i(当前背包容量0 ~ m+1) / A[0](重量) * V[0](价值)
    for i in range(m+1):
        dp[0][i] = i // A[0] * V[0]

    for i in range(1, n):
        for j in range(1, m+1):
            for k in range(j):
                if k*A[i] <= j:
                    dp[i][j] = max(dp[i-1][j-k*A[i]]+k*V[i], dp[i-1][j], dp[i][j])
                else:
                	break
    return dp[-1][-1]

if __name__ == '__main__':
    m = 10
    A = [2, 3, 5, 7]
    V = [1, 5, 2, 4]
    # 15
    print(backpack1(m, A, V))

 一维动态规划  

def backpack(m, A, V): 
    n = len(A)
    if n <= 0 or m <= 0:
        return 0
    dp = [0] * (m+1)
    # i: 0 ~ n
    for i in range(n):
        # j: A[i] ~ m+1 重复使用
        for j in range(A[i], m+1):
            dp[j] = max(dp[j-A[i]] + V[i], dp[j])
    return dp[-1]

if __name__ == '__main__':
    m = 10
    A = [2, 3, 5, 7]
    V = [1, 5, 2, 4]
    # 15
    print(backpack(m, A, V))

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值