统计模型LM,GLM,GAM和GAMLSS

1): 统计模型LM,GLM和GAM的框架和区别:https://juejin.cn/post/7062964190415159333
https://zhuanlan.zhihu.com/p/112870342?from_voters_page=true
2):广义加性模型GAM及其R实现
解释R中GAM函数的输出: https://blog.csdn.net/qq_42458954/article/details/88805709
解释R中GAM函数的输出: https://noamross.github.io/gams-in-r-course/
解释R中GAM函数的输出: https://blog.csdn.net/textboy/article/details/47277131
Splines and Generalized Additive Models的R实现:https://rstudio-pubs-static.s3.amazonaws.com/489270_c9a4f8a63f994e238bc7909409b646cd.html
R中GAM函数使用文档说明:https://www.rdocumentation.org/packages/mgcv/versions/1.9-0/topics/gam
3::三次样条插值:https://zhuanlan.zhihu.com/p/62860859
4):GAMLSS的算法原理和应用:见scDesign3
总而言之,LM>GLM>GAM>GAMLSS 模型的灵活度越来越大,约束或者前提假设越来越少,可应用的场景越来越多。

### LM GLM 的定义 #### Levenberg-Marquardt (LM) 算法 Levenberg-Marquardt (LM) 是一种用于解决非线性最小二乘问题的优化算法。它通过结合梯度下降法高斯-牛顿法的优点,在参数空间中寻找最优解[^3]。 #### Generalized Linear Models (GLM) 广义线性模型GLM)是一种扩展的传统线性回归模型,允许因变量的概率分布属于指数族中的任意成员。GLM 使用链接函数将预测变量的线性组合映射到响应变量的期望值上[^1]。 --- ### 主要差异比较 | **方面** | **LM (Levenberg-Marquardt)** | **GLM (Generalized Linear Model)** | |-------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------| | **领域** | 数学优化算法,主要用于拟合非线性模型或求解最小化问题 | 统计建模框架,适用于描述输入特征与目标变量之间的关系 | | **功能** | 寻找使误差平方最小化的参数估计 | 建立自变量与因变量之间基于概率分布的关系 | | **适用场景** | 非线性曲线拟合、机器学习超参数调优 | 分类问题(如逻辑回归)、计数数据(泊松回归)、连续正态分布数据 | | **核心机制** | 结合梯度下降高斯-牛顿迭代更新 | 利用连接函数将线性预测器转换为目标变量的均值 | | **实现方式** | 迭代调整步长大小以平衡收敛速度稳定性 | 定义似然函数并通过最大似然估计推导参数 | --- ### R语言中的GLM函数示例 以下是使用R语言构建GLM的一个简单例子: ```r # 加载内置数据集 mtcars data(mtcars) # 构建一个逻辑回归模型作为GLM的一种特例 model <- glm(vs ~ hp, data = mtcars, family = binomial(link = "logit")) # 查看模型摘要 summary(model) ``` 上述代码展示了如何利用 `glm` 函数建立一个逻辑回归模型来分析汽车马力 (`hp`) 对发动机形状类别 (`vs`) 的影响。 --- ### LLMs 中的语言模型评价工具 lm-evaluation-harness 虽然本讨论未涉及具体的大型语言模型(LLMs),但值得注意的是,现代自然语言处理研究常用像 `lm-evaluation-harness` 这样的工具评估不同规模架构下的语言模型性能[^2]。这进一步表明,“LM”也可能指代更广泛意义上的语言模型概念而非仅限于数学优化技术。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值