工业离散制造过程中的符合率业务需求问题
前期知识储备
机器学习三大件:Numpy Matplotlib Pandas
表格型数据 数据挖掘算法:有监督、无监督
机器学习神奇-Sklearn:Sklearn的机器学习算法的应用
大背景—— 智能制造带来的革命性影响(工业4.0)
业务场景分析
在高端制造领域,随着数字化转型的深入推进,越来越多的数据可以被用来分析和学习,
进而实现制造过程中重要决策和控制环节的智能化,例如生产质量管理。
从数据驱动的方法来看,生产质量管理通常需要完成质量影响因素挖掘及质量预测、质量控制优化等环节,
本赛题将关注与第一个环节,基于对潜在的相关参数及历史生产数据进行分析,完成质量相关因素的确认和最终质量符合率的预测。
在实际生产中,该环节的结果将是后续控制优化的重要依据
选题
赛题任务
由于在实际生产中,同一组工艺参数设定下生产的工件会出现多种质检结果,所以我们针对各组工艺参数定义其质检标准符合率,即为该组工艺参数生产的工件的质检结果分别符合优、良、合格与不合格四类指标的比率。相比预测各个工件的质检结果,预测该质检标准符合率会更具有实际意义。
本赛题要求参赛者对给定的工艺参数组合所生产工件的质检标准符合率进行预测。