机器学习项目(一)工业离散制造过程中的符合率业务需求问题(一)

本文探讨了工业离散制造过程中的质量控制问题,通过机器学习预测质检标准符合率。介绍赛题背景、数据特点及初步的技术方案,涉及数据挖掘、Sklearn库和分类算法的应用。
摘要由CSDN通过智能技术生成

工业离散制造过程中的符合率业务需求问题

前期知识储备

机器学习三大件:Numpy Matplotlib Pandas
表格型数据 数据挖掘算法:有监督、无监督
机器学习神奇-Sklearn:Sklearn的机器学习算法的应用

大背景—— 智能制造带来的革命性影响(工业4.0)

业务场景分析

在高端制造领域,随着数字化转型的深入推进,越来越多的数据可以被用来分析和学习,
进而实现制造过程中重要决策和控制环节的智能化,例如生产质量管理。
从数据驱动的方法来看,生产质量管理通常需要完成质量影响因素挖掘及质量预测、质量控制优化等环节,
本赛题将关注与第一个环节,基于对潜在的相关参数及历史生产数据进行分析,完成质量相关因素的确认和最终质量符合率的预测。
在实际生产中,该环节的结果将是后续控制优化的重要依据

选题

赛题链接

赛题任务

由于在实际生产中,同一组工艺参数设定下生产的工件会出现多种质检结果,所以我们针对各组工艺参数定义其质检标准符合率,即为该组工艺参数生产的工件的质检结果分别符合优、良、合格与不合格四类指标的比率。相比预测各个工件的质检结果,预测该质检标准符合率会更具有实际意义。

本赛题要求参赛者对给定的工艺参数组合所生产工件的质检标准符合率进行预测。

数据简介DATA BACKGROUD

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值