四叉树(Q-Tree)是一种树形数据结构。四叉树的定义是:它的每个节点下至多可以有四个子节点,通常把一部分二维空间细分为四个象限或区域并把该区域里的相关信息存入到四叉树节点中。
更多原理请参考大佬写的原理讲解以及伪码: https://www.cnblogs.com/wellp/p/8536745.html
这里我们用opencv来绘制出四叉树对应的矩形区域,通过graphviz来可视化树的结构。鼠标左键双击可以添加数据点,右键双击则删除一个最近的数据点。
效果图:
树结构可视化:
说明:可视化这里因为为了省事用的现成的库,没有仔细研究,节点上标的是区域的左上角坐标,边上标的值意义不大。。
我们来看看代码实现:
import numpy as np
import cv2
from graphviz import Digraph
class QuadNode():
def __init__(self, depth, x, y, width, height):
self.rect = (x,y,width,height)
self.data = []
self.depth = depth
self.sub = []
color = {
0:(255,0,0), 1:(0,255,0), 2:(0,0,255), 3:(255,255,0), 4:(255,0,255), 5:(0,255,255), 6:(100,0,0)}
line_size = {
0:6, 1:4, 2:3, 3:2, 4:1, 5:1, 6:1}
def traverse(root, img):
tree_dic = {
}
if root:
print(root.depth)
if len(root.sub) > 0 or len(root.data) > 0:
tree_dic[str((root.rect[0], root.rect[1]))] = {
}
for node in root.sub:
t_dic