可视化四叉树

本文介绍了四叉树数据结构,用于将二维空间细分为四个象限,并利用opencv和graphviz进行四叉树的可视化。提供了双击鼠标添加或删除数据点的功能,展示了树结构和矩形区域的可视化效果。
摘要由CSDN通过智能技术生成

四叉树(Q-Tree)是一种树形数据结构。四叉树的定义是:它的每个节点下至多可以有四个子节点,通常把一部分二维空间细分为四个象限或区域并把该区域里的相关信息存入到四叉树节点中。

更多原理请参考大佬写的原理讲解以及伪码: https://www.cnblogs.com/wellp/p/8536745.html

这里我们用opencv来绘制出四叉树对应的矩形区域,通过graphviz来可视化树的结构。鼠标左键双击可以添加数据点,右键双击则删除一个最近的数据点。
效果图:
在这里插入图片描述
树结构可视化:
说明:可视化这里因为为了省事用的现成的库,没有仔细研究,节点上标的是区域的左上角坐标,边上标的值意义不大。。
在这里插入图片描述
我们来看看代码实现:

import numpy as np
import cv2
from graphviz import Digraph

class QuadNode():
    def __init__(self, depth, x, y, width, height):
        self.rect = (x,y,width,height)
        self.data = []
        self.depth = depth
        self.sub = []

color = {
   0:(255,0,0), 1:(0,255,0), 2:(0,0,255), 3:(255,255,0), 4:(255,0,255), 5:(0,255,255), 6:(100,0,0)}
line_size = {
   0:6, 1:4, 2:3, 3:2, 4:1, 5:1, 6:1}

def traverse(root, img):
    tree_dic = {
   }
    if root:
        print(root.depth)
        if len(root.sub) > 0 or len(root.data) > 0:
            tree_dic[str((root.rect[0], root.rect[1]))] = {
   }
            for node in root.sub:
                t_dic
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值