邻接表
-
优点:1)省空间,空间复杂度(m)
---------2)快速访问以某一点为起点的所有边 -
缺点:不能快速判断两点间关系
-
应用:Floyd算法
求多源最短路径,即任意两点间的最短路径。时间复杂的 O(n^3)
#include <iostream>
using namespace std;
int n, m, arr[1000][1000]; //n个点 m条边
void Floyd()
{ //表示从j点到k点的最短路径,其中的i为中间的中转点
for (int i = 1; i <= n; ++i) //i为中转在最外层
for (int j = 1; j <= n; ++j)
for (int k = 1; k <= n; ++k)
arr[j][k] = min(arr[j][k], arr[j][i] + arr[i][k]);
}
int main()
{
memset(arr, 0x3F, sizeof(arr)); //0x3F表示就算乘以2不会越界,值等价于0x3F3F3F3F
return 0;
}
邻接矩阵
-
优点:快速直观判断两点间关系
-
缺点:1)不省空间 ,存储无用信息;,空间复杂度(n *n)
2)不可以快速访问以某一点为起点的所有边
-
应用:Dijkstra算法
求单源最短路径,即只能某点开始到其他点的最短路径。
不能有值为负数的权边(负权边)和一个环的值为负数(负环)
#include <iostream>
#include <queue> //优先队列实现筛选最所确定点的最小值
#include <vector> //实现邻接表
#include <cstring>
using namespace std;
struct node { //记录每个点信息
int now; //当前所在的点
int dis; //到now这个点的距离
bool operator< (const node& b) const {
//让值小的在最顶
return this->dis > b.dis;
}
};
struct edge { //记录每条边信息
int e; //边的终点
int v; //边的权值
};
int n; //点的数量
int m; //边的数量
int s; //起点
int ans[100005]; //存储最短路径
int main()
{
memset(ans, 0x3F, sizeof(ans)); //0x3F表示就算乘以2不会越界,值等价于0x3F3F3F3F
cin >> n >> m >> s; //怕超时可以改成scanf()
vector<vector<edge> > edg(n + 1, vector<edge>()); //初始化邻接表
for (int i = 0; i < m; ++i) {
int a, b, c; //起点为a,终点为b,权值为c
cin >> a >> b >> c;
edg[a].emplace_back((edge) { b, c });
edg[b].emplace_back((edge) { a, c });
}
priority_queue<node> que;
que.push((node) { s, 0 });
ans[s] = 0;
while (!que.empty()) {
node tmp = que.top();
que.pop();
if (tmp.dis > ans[tmp.now]) continue; //筛选掉已确定的点
//在优先队列下,这一步就是未确定点最小值
for (int i = 0; i < edg[tmp.now].size(); ++i) { //进行遍历,edg[tmp.now]为当前边
int e = edg[tmp.now][i].e, v = edg[tmp.now][i].v;
if (ans[e] > ans[tmp.now] + v) {
ans[e] = ans[tmp.now] + v;
que.push((node) { e, ans[e] });
}
}
}
for (int i = 1; i <= n; ++i)
if (0x3F3F3F3F == ans[i]) cout << -1 << endl;
else cout << ans[i] << endl;
return 0;
}