邻接矩阵:Floyd算法 邻接表:Dijkstra算法

邻接表

  • 优点:1)省空间,空间复杂度(m)
    ---------2)快速访问以某一点为起点的所有边

  • 缺点:不能快速判断两点间关系

  • 应用:Floyd算法

    ​ 求多源最短路径,即任意两点间的最短路径。时间复杂的 O(n^3)

#include <iostream>
using namespace std;

int n, m, arr[1000][1000]; //n个点 m条边
void Floyd()
{   //表示从j点到k点的最短路径,其中的i为中间的中转点
    for (int i = 1; i <= n; ++i) //i为中转在最外层
        for (int j = 1; j <= n; ++j)
            for (int k = 1; k <= n; ++k)
                arr[j][k] = min(arr[j][k], arr[j][i] + arr[i][k]);
}

int main()
{
    memset(arr, 0x3F, sizeof(arr)); //0x3F表示就算乘以2不会越界,值等价于0x3F3F3F3F
    return 0;
}


邻接矩阵

  • 优点:快速直观判断两点间关系

  • 缺点:1)不省空间 ,存储无用信息;,空间复杂度(n *n)

    ​ 2)不可以快速访问以某一点为起点的所有边

  • 应用:Dijkstra算法
    求单源最短路径,即只能某点开始到其他点的最短路径。
    不能有值为负数的权边(负权边)和一个环的值为负数(负环)

在这里插入图片描述

#include <iostream>
#include <queue> //优先队列实现筛选最所确定点的最小值
#include <vector> //实现邻接表
#include <cstring>
using namespace std;

struct node { //记录每个点信息
    int now; //当前所在的点
    int dis; //到now这个点的距离
    bool operator< (const node& b) const {
        //让值小的在最顶
        return this->dis > b.dis;
    }
};

struct edge { //记录每条边信息
    int e; //边的终点
    int v; //边的权值
};

int n; //点的数量
int m; //边的数量
int s; //起点
int ans[100005]; //存储最短路径

int main()
{
    memset(ans, 0x3F, sizeof(ans)); //0x3F表示就算乘以2不会越界,值等价于0x3F3F3F3F
    cin >> n >> m >> s; //怕超时可以改成scanf()
    vector<vector<edge> > edg(n + 1, vector<edge>()); //初始化邻接表
    for (int i = 0; i < m; ++i) {
        int a, b, c; //起点为a,终点为b,权值为c
        cin >> a >> b >> c;
        edg[a].emplace_back((edge) { b, c });
        edg[b].emplace_back((edge) { a, c });
    }

    priority_queue<node> que;
    que.push((node) { s, 0 });
    ans[s] = 0;
    while (!que.empty()) {
        node tmp = que.top();
        que.pop();
        if (tmp.dis > ans[tmp.now]) continue; //筛选掉已确定的点
        //在优先队列下,这一步就是未确定点最小值
        for (int i = 0; i < edg[tmp.now].size(); ++i) { //进行遍历,edg[tmp.now]为当前边
            int e = edg[tmp.now][i].e, v = edg[tmp.now][i].v;
            if (ans[e] > ans[tmp.now] + v) {
                ans[e] = ans[tmp.now] + v;
                que.push((node) { e, ans[e] });
            }
        }
    }

    for (int i = 1; i <= n; ++i)
        if (0x3F3F3F3F == ans[i]) cout << -1 << endl;
        else cout << ans[i] << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值