Problem N
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 14 Accepted Submission(s) : 9
Problem Description
我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。<br><img src=../data/images/C40-1008-1.jpg>
Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(0<n<=10000),表示折线的数量。<br><br>
Output
对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。<br><br>
Sample Input
2 1 2
Sample Output
2 7
题目大意:
如题。
思路:
蒋师傅给我讲了这个题,具体的我怎么说呢,蒋师傅说这是个很简单的数竞题目,默默鄙视他一小会。
对于直线分割平面的问题,同学们理解的怎么样?这个就是个延伸吧。
每个折现都要和前面的 n-1 个折线有尽可能多的交点才可以获得更多的平面,所以可以用递推公式解决
fn = f(n -1)+4* (n-1) +1
当然,fn 表示的是直线的个数为n 时,平面的数量。
对于第 n 个直线,它与之前的直线 当然要产生 4*(n-1) 个交点,那么,就会产生额外 4*(n-1)+1 个面,加上之前的,就是答案。
感想:
关于这种东西真的感到很茫然,希望能有个蒋师傅这样的大神带着飞~~
AC代码:
#include <iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
int main()
{
long long int a,T,n,m,i,j,temp,k,b;
cin>>T;
while(T--)
{
cin>>a;
cout<<a*a*2-a+1<<endl;
}
return 0;
}