SDAU 课程练习3 1014

Problem N

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 14   Accepted Submission(s) : 9
Problem Description
我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。<br><img src=../data/images/C40-1008-1.jpg>
 

Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(0<n<=10000),表示折线的数量。<br><br>
 

Output
对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。<br><br>
 

Sample Input
  
  
2 1 2
 

Sample Output
  
  
2 7

 


题目大意:


如题。


思路:


蒋师傅给我讲了这个题,具体的我怎么说呢,蒋师傅说这是个很简单的数竞题目,默默鄙视他一小会。

对于直线分割平面的问题,同学们理解的怎么样?这个就是个延伸吧。

每个折现都要和前面的  n-1  个折线有尽可能多的交点才可以获得更多的平面,所以可以用递推公式解决

 fn = f(n -1)+4* (n-1) +1   

当然,fn 表示的是直线的个数为n 时,平面的数量。

对于第 n 个直线,它与之前的直线  当然要产生 4*(n-1) 个交点,那么,就会产生额外  4*(n-1)+1 个面,加上之前的,就是答案。


感想:


关于这种东西真的感到很茫然,希望能有个蒋师傅这样的大神带着飞~~


AC代码:

#include <iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
int main()
{
    long long int a,T,n,m,i,j,temp,k,b;

    cin>>T;
    while(T--)
    {
        cin>>a;
        cout<<a*a*2-a+1<<endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值