BZOJ 1087: [SCOI2005]互不侵犯King

1087: [SCOI2005]互不侵犯King

Time Limit: 10 Sec   Memory Limit: 162 MB
Submit: 3436   Solved: 1995
[ Submit][ Status][ Discuss]

Description

  在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上
左下右上右下八个方向上附近的各一个格子,共8个格子。

Input

  只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)

Output

  方案数。

Sample Input

3 2

Sample Output

16

HINT

题目大意:

如题。

思路:

其实是一个简单的状态压缩dp。枚举状态,判断是否合法,这个要求  k 和棋子,所以加一维 枚举  个数。
可能是好久没接触这里的东西,写出来  一直  wa  看了题解,发现并没有问题,改成   longlong 就过了....00.0
orz

AC代码:

#include<bits/stdc++.h>
using namespace std;
const int maxx=(1<<9)+1;
int all[maxx];
int num[maxx];
long long int dp[10][maxx][85];
int main()
{
    int n,m;
    int tt=0;
    int cc=0;
    while(~scanf("%d%d",&n,&m))
    {
        tt=0;
        memset(dp,0,sizeof(dp));
        for(int i=0;i<(1<<n);i++)
        {
            if((i&(i<<1))==0)
            {
                all[tt]=i;
                for(int j=0;j<9;j++)
                {
                    if((i&(1<<j))!=0)
                    {
                        cc++;
                    }
                }
                num[tt++]=cc;
                cc=0;
            }
        }

        for(int i=0;i<tt;i++)
        {
            dp[1][all[i]][num[i]]=1;
        }

        for(int i=2;i<=n;i++)
        {
            for(int t=0;t<tt;t++)
            {
                for(int k=0;k<tt;k++)
                {
                    if((all[t]&all[k]))
                    {
                        continue;
                    }
                    if((all[t]&(all[k]<<1)))
                    {
                        continue;
                    }
                    if((all[t]<<1)&(all[k]))
                    {
                        continue;
                    }
                    for(int kk=0;kk<=m;kk++)
                        dp[i][all[t]][num[t]+kk]+=dp[i-1][all[k]][kk];
                }
            }
        }
        long long int ans=0;
        for(int i=0;i<tt;i++)
        {
            ans+=dp[n][all[i]][m];
        }
        cout<<ans<<endl;
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值