数据挖掘之特征工程

1.什么是特征工程:

     是对原始数据进行一系列工程处理,将其提炼为特征,作为输入供算法和模型使用。从本质上来讲,特征工程是一个表示和展现数 据的过程。在实际工作中,特征工程旨在去除原始数据中的杂质和冗余,设计更 高效的特征以刻画求解的问题与预测模型之间的关系。
 
特征工程有很多的方法,其中比较常见的有:

 

 

      1.1 特征归一化

              为了消除数据特征之间的量纲影响,我们需要对特征进行归一化处理,使得 不同指标之间具有可比性。
1 )线性函数归一化( Min-Max Scaling )。它对原始数据进行线性变换使结果映射到[0, 1] 的范围实现对原始数据的等比缩 放。
                   归一化公式如下 
                                    value = max-min/max
 
               其中 X 为原始数据, X max X min 分别为数据最大值和最小值。
2 )零均值归一化( Z-Score Normalization )。它会将原始数据映射到均值为 0、标准差为 1 的分布上。具体来说,假设原始特征的均值为 μ 、标准差为 σ ,那么 归一化公式定义为:
                                     value =  x- μ/σ
在实际应用中,通过梯度下降法求解的模 型通常是需要归一化的,包括线性回归、逻辑回归、支持向量机、神经网络等模型。但对于决策树模型则并不适用,以C4.5为例.
 
                    
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页