AI蜗牛车
码龄6年
  • 1,393,944
    被访问
  • 209
    原创
  • 892
    排名
  • 32,271
    粉丝
关注
提问 私信

个人简介:关注公众号:AI蜗牛车回复:蜗牛获得一份我纯个人整理的AI落地小白入门

  • 加入CSDN时间: 2015-12-19
博客简介:

AI蜗牛车

博客描述:
关注公众号:AI蜗牛车 回复:1222 得到google工程师整理的leetcode刷题笔记
查看详细资料
  • 7
    领奖
    总分 3,209 当月 188
个人成就
  • 博客专家认证
  • 获得1,195次点赞
  • 内容获得676次评论
  • 获得5,657次收藏
  • GitHub 获得398Stars
创作历程
  • 236篇
    2022年
  • 340篇
    2021年
  • 139篇
    2020年
  • 118篇
    2019年
  • 27篇
    2018年
  • 26篇
    2017年
成就勋章
TA的专栏
  • TOOLS
    2篇
  • 机器学习面试
    1篇
  • 随笔
    27篇
  • 时空序列预测
    13篇
  • pytorch学习笔记
    2篇
  • 时间序列
    2篇
  • 异常检测
    2篇
  • 串讲总结
    1篇
  • Tensorflow学习笔记
    9篇
  • 数据挖掘学习笔记
    4篇
  • 《AI paper》论文学习笔记
    2篇
  • Deep Learning
    30篇
  • Data mining
    7篇
  • Machine Learning
    1篇
  • android
    14篇
  • qt
    5篇
  • TensorFlow
    13篇
  • caffe
    9篇
  • ncnn
    1篇
  • CV
    4篇
  • opencv
    3篇
  • STM32
    1篇
  • feelings
    2篇
  • plans
    1篇
  • PyTorch
    1篇
  • Time Series
    4篇
TA的推广
个人平台

b站视频技术教程:我是蜗牛学长

大厂算法工程师,校招斩获多家大厂算法岗ssp,现在抽出时间开始做视频知识分享了!欢迎关注我呀!

点击关注:我的b站

欢迎关注个人公众号:AI蜗牛车

关注公众号回复:【蜗牛】or【1222】获得详细的项目手册和刷题笔记

关注公众号回复:【wx】我的联系方式

关注公众号回复:【AI四大名著】获取四本经典书籍

扫码关注:AI蜗牛车

其他平台

关注:我的知乎 我的GitHub代码库
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

深度学习面试题:除了BN你还知道哪些归一化方法?

除了BN你还知道哪些归一化方法?总结具体的深度学习中的归一化方法主要Batch Normalization(BN,2015年)、Layer Normalization(LN,2016年)、Instance Normalization(IN,2017年)、Group Normalization(GN,2018年)、Switchable Normalization(SN 20...
转载
发布博客 14 小时前 ·
4 阅读 ·
0 点赞 ·
0 评论

详解最大似然估计、最大后验概率估计及贝叶斯公式

最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两种方法的思路,很容易弄混它们。下文将详细说明MLE和MAP的思路与区别。但别急,我们先从概率和统计的区别讲起。概率和统计是一个东西吗?概率(p...
转载
发布博客 14 小时前 ·
3 阅读 ·
0 点赞 ·
0 评论

我逃到国企了

文章内容整理自公众号国企程序锅文章目录入职国企心得体会一、入职前二、入职后三、工作开发内容四、钱总结:北京户口相关问题一、北京户口咋获得?二、北京户口有啥用?三、高薪无户口VS低薪有户口?总结:秋招找国企的一些经验分享一、offer选择二、计算机相关国企排名校招如何准备国企面试一、简历根据用人单位投其所好二、获得高质量的就业信息三、海投四、笔试准备资料央企归类整理一、什么...
转载
发布博客 14 小时前 ·
18 阅读 ·
0 点赞 ·
0 评论

深度学习模型、算法的数学基础

机器之心报道编辑:陈萍期待即将到来的章节。深度学习这一领域,对于初学者而言,编程已然令人生畏,而更加令人难以接受的是,深度学习里的数学知识更难。对于这种困惑,已经有人提前替你想到了,这不今天就为大家推荐一本新书,书中介绍了深度学习中的数学工程。书的名字为《 The Mathematical Engineering of Deep Learning 》,顾名思义,这是一本...
转载
发布博客 前天 22:22 ·
8 阅读 ·
0 点赞 ·
0 评论

深度学习模型、算法的数学基础

机器之心报道编辑:陈萍期待即将到来的章节。深度学习这一领域,对于初学者而言,编程已然令人生畏,而更加令人难以接受的是,深度学习里的数学知识更难。对于这种困惑,已经有人提前替你想到了,这不今天就为大家推荐一本新书,书中介绍了深度学习中的数学工程。书的名字为《 The Mathematical Engineering of Deep Learning 》,顾名思义,这是一本...
转载
发布博客 前天 22:22 ·
8 阅读 ·
0 点赞 ·
0 评论

旷视三年,我学到了什么

今天给大家分享一位在旷视工作三年的老哥,在职期间的一些收获与感悟,以下为原文。因为要找个房价和湿度都不太离谱的城市定居,所以离开了北京。有的人离职会偷些东西——或是宝贵敏感的数据;或是精妙的源码——我觉得这些都不是这家公司的内核、对个体而言一点都不重要,所以我带走一些故事。一. 一些“黑话”和乐观这边把研究员群体(Researcher)统称 R。家楠是 R 中的一员,样貌...
转载
发布博客 前天 22:22 ·
6 阅读 ·
0 点赞 ·
0 评论

机器学习面试题:为什么DL中Dropout有效?

面试题:为什么DL中的Dropout有效?简单回答:防止参数过分依赖训练数据,增加参数对数据集的泛化能力。从以下多个角度详细解释Dropout可以被认为是集成大量深层神经网络的实用的Bagging方法,减少模型复杂度,提高泛化能力。Drop out可以减少神经元之间复杂的共适应关系,因为Dropout使得某两个神经元不一定每次都在一个子网络结构中出现。基于此权值的更新不在...
转载
发布博客 前天 22:22 ·
9 阅读 ·
0 点赞 ·
0 评论

Python 函数式编程,看这一篇就够了!

编辑:python学习与数据挖掘本文对 Python 中的函数式编程技术进行了简单的入门介绍。头等函数在 Python 中,函数是「头等公民」(first-class)。也就是说,函数与其他数据类型(如 int)处于平等地位。因而,我们可以将函数赋值给变量,也可以将其作为参数传入其他函数,将它们存储在其他数据结构(如 dicts)中,并将它们作为其他函数的返回值。把函数作...
转载
发布博客 2022.05.22 ·
10 阅读 ·
0 点赞 ·
0 评论

横扫BBATM的秋招总结

大家好,我是蜗牛,今天给大家带来我的一位朋友的秋招经历,是个很牛逼的人。一个有着AT实习经历的程序员,「阿里腾讯百度字节美团快手网易京东拼多多+微软」的秋招总结1. 概览我是计算机专业的硕士,秋招拿到了若干大厂搜广推方向的offer,总结如下,其中「不乏一些百万offer,也拿到了一些头部计划如快star」:阿里——淘宝腾讯——视频号字节——TikTok美团——团好货百度...
转载
发布博客 2022.05.22 ·
4 阅读 ·
0 点赞 ·
0 评论

如何在科研论文中画出漂亮的插图?

本文整理自知乎问答,仅用于学术分享,著作权归作者所有。如有侵权,请联系后台作删文处理。编译:极市平台方法一作者|冯昱尧https://www.zhihu.com/question/21664179/answer/18928725强烈推荐 Python 的绘图模块 matplotlib: python plotting 。画出来的图真的是高端大气上档次,低调奢华有内涵~ 适...
转载
发布博客 2022.05.22 ·
11 阅读 ·
0 点赞 ·
0 评论

我确实在DL上没有天赋

今天给大家分享一位博主对于深度学习的看法,文笔清奇而幽默。炼丹多了,会感觉DL越来越玄学,越来越难以解释,到现在我也有这样的感触,只能通过多做几组实验来解除困扰,以下为原文。作者:Cherrise | 编辑:对白的算法屋https://zhuanlan.zhihu.com/p/466568642我确实在DL上没有天赋,不知道CNN和RNN有啥作用。我确实无法理解神经网络结...
转载
发布博客 2022.05.21 ·
14 阅读 ·
0 点赞 ·
0 评论

千字讲解极大似然估计

上周有读者私信我说,面试被问到了极大似然估计没回答出来,虽然网上有很多讲解,但是不大能看得懂,而且有一些疑问没有解释清楚。经过一周的撰写,今天困哥就专门整理了一篇数千字的文章,来详细介绍一下极大似然估计,顺带介绍一下极大后验估计和贝叶斯估计。在很多的机器学习问题种,输入x是一个向量,输出p(x)为某一个时间的概率(比如,x属于某个类别的概率)一观测的数据集D,其中x1,x...
转载
发布博客 2022.05.21 ·
9 阅读 ·
0 点赞 ·
0 评论

算法工程师读论文思路

读论文方面的经验,我应该不是第一次写了,之前有关研究生的经验里多少提过一些(我从研究生生活中得到的经验,心法利器[36] | 开学季:我给研究生的建议),但是我们毕业后,走向算法工程师的工位后,持续学习的口号却仍旧持续督促我们,读论文是算法工程师非常重要的学习方法,甚至有的工作就需要我们持续阅读,这里给大家介绍一下我的读论文思路吧。为什么要读论文首先要解决的是为什么的问题...
转载
发布博客 2022.05.18 ·
26 阅读 ·
0 点赞 ·
0 评论

我有文章了,但也不想搞学术了

文 | 微调源 | 知乎编辑 |夕小瑶的卖萌屋又到了年底,跟大家简单唠唠2021年的收获(和失去)。在2020年的总结文章里(阿调x2020:爱、学术、钱与系统[1]),我最大的困扰可能是读博一年多却没什么主要成果的痛苦。好消息是,21年在一作文章文章上进展不错,离毕业更近了(包括 Automatic Unsupervised Outlier Model Selectio...
转载
发布博客 2022.05.18 ·
20 阅读 ·
0 点赞 ·
0 评论

非常全面详细的Sklearn介绍

全文共 26745 字,106 幅图表,预计阅读时间 67 分钟。0引言Sklearn (全称 Scikit-Learn) 是基于 Python 语言的机器学习工具。它建立在 NumPy, SciPy, Pandas 和 Matplotlib 之上,里面的 API 的设计非常好,所有对象的接口简单,很适合新手上路。在 Sklearn 里面有六大任务模块:分别是分类、回归、...
转载
发布博客 2022.05.18 ·
44 阅读 ·
0 点赞 ·
0 评论

最小路径问题 | Dijkstra算法详解

一、最短路径问题介绍1、从图中的某个顶点出发到达另外一个顶点的所经过的边的权重和最小的一条路径,称为最短路径。2、解决问题的算法:迪杰斯特拉算法(Dijkstra算法)弗洛伊德算法(Floyd算法)SPFA算法这篇文章,就先对Dijkstra算法来做一个详细的介绍~二、Dijkstra算法介绍算法特点迪科斯彻算法使用了广度优先搜索解决赋权有向图或者无向图的单源最短路径问题...
转载
发布博客 2022.05.17 ·
23 阅读 ·
0 点赞 ·
0 评论

特征工程:缺失值填充5大技巧

公众号:尤而小屋作者:Peter编辑:Peter本文记录的是Pandas中缺失值填充的5大技巧:填充具体数值,通常是0填充某个统计值,比如均值、中位数、众数等填充前后项的值基于SimpleImputer类的填充基于KNN算法的填充数据importpandasaspdimportnumpyasnpdf=pd.DataFrame({"A":list...
转载
发布博客 2022.05.17 ·
4 阅读 ·
0 点赞 ·
0 评论

如何搭建适合时间序列预测的Transformer模型?

今天又是一篇Transformer梳理文章,这次应用场景是时间序列预测。Transformer的序列建模能力,让其天然就比较适合时间序列这种也是序列类型的数据结构。但是,时间序列相比文本序列也有很多特点,例如时间序列具有自相关性或周期性、时间序列的预测经常涉及到周期非常长的序列预测任务等。这些都给Transformer在时间序列预测场景中的应用带来了新的挑战,也使业内出现...
转载
发布博客 2022.05.16 ·
22 阅读 ·
0 点赞 ·
0 评论

【算法岗求职笔记】集成学习(四)GBDT · 九问九答

前言废话少说,机器学习第十篇主要整理的是集成学习部分的第四部分常见集成模型:GBDT为了能够持续更新和添加新的知识点,以及修改错误,建立了一个repo,欢迎大家来个star或者推荐给需要的朋友:https://github.com/chehongshu/machine-learning-interview-chinese推荐阅读https://zhuanlan.zhihu...
原创
发布博客 2022.05.15 ·
186 阅读 ·
0 点赞 ·
0 评论

7个常用的Pandas时间戳处理函数

转自:『数据STUDIO』在零售、经济和金融等行业,数据总是由于货币和销售而不断变化,生成的所有数据都高度依赖于时间。 如果这些数据没有时间戳或标记,实际上很难管理所有收集的数据。Python 程序允许我们使用 NumPy timedelta64 和 datetime64 来操作和检索时间序列数据。 sklern库中也提供时间序列功能,但 pandas 为我们提供了更多且...
转载
发布博客 2022.05.14 ·
15 阅读 ·
0 点赞 ·
0 评论
加载更多