上题目链接:https://www.luogu.org/problemnew/show/P1183
这道题是真的涉及到了我的知识盲区了,怎么办,怪我高数没学好咯。
这道题的思想是这样的:
利用向量的叉乘计算多边形的面积:
向量的叉乘所得的是一个带方向的面积,但其是一个标量
本图引用洛谷 Md_Drew的题解
两个向量三个点可以计算出一个四边形的面积
也就是在已知的点中,有序的使用两个点的向量,相乘,所得的就是一个平行四边形的面积,将其除以2,即为多边形的一部分
也许你会问会有重叠呢
注意,叉乘获取的是一个标量,但是其也有正负,重叠的部分会与负的相抵消,相加后即为答案,注意要除以2哟
该结论对任意多边形,这种算法都成立。
所有证明均可在洛谷题解中查看
上AC代码:
#include <bits/stdc++.h>
using namespace std;
int n,x[500],y[500],sum=0;
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d %d",&x[i],&y[i]);
}
x[n+1]=x[1],y[n+1]=y[1];//此处是为了方便
for(int i=1;i<=n;i++)
sum+=(x[i]*y[i+1]-x[i+1]*y[i]);//以原点为起点哈
printf("%d",abs(sum/2));//注意取绝对值
return 0;
}