原题目:
给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m]。请问k[0]xk[1]x...xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
题目分析:
题目本质上是给定一个自然数n,分为m个自然数,使其和为n,求m个自然数(数字可重复)的最大乘积?
这是一个动态规划问题,就是通过组合子问题的解来求原问题的解;
算法设计步骤:
-
刻画一个最优解的结构特征;
-
递归的定义最优解的值;
-
计算最优解的值,通常采用自底向上的方法;
-
利用计算出的信息构造一个最优解;
写几个数观察一下:
1 2 3 不可分,分割了乘积会比自己还小;
4 = 2 + 2;
5 = 2 + 3;
6 = 3 + 3;
7 = 3 + 4 = 3 + 2 + 2;
8 = 3 + 3 + 2;
9 = 3 + 3 + 3;
10 = 3 + 3 + 4 = 3 + 3 + 2 + 2;
规律总结:
任意元素大小不会超过4,因为4及4以上都可再分解;
多分3,其次2,不要1;
对任意一个数除以三,结果如下:
能整除;3 + 3 + 3 + ...... + 3;
余数为1;将最后一个三加一;分为3 + 3 +......+3 + 3 + 2 + 2;
余数为2;最后一个三后加2;3 + 3 +......+3 + 3 + 2;
代码实现:
public class Solution {
public int cutRope(int target) {
int a = 0;
int c = 0;
int maxValue = 2;
if (target == 2) {
return 1;
}
if (target == 3) {
return 2;
}
if (target % 3 == 0) {
maxValue = (int)Math.pow(3, target / 3);
} else{
a = target - 2;
c = a % 3;
maxValue = maxValue * (int)Math.pow(3, a / 3);
if (0 != c) {
maxValue = maxValue * c;
}
}
return maxValue;
}
}