剪绳子

原题目:

给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m]。请问k[0]xk[1]x...xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。


题目分析:

题目本质上是给定一个自然数n,分为m个自然数,使其和为n,求m个自然数(数字可重复)的最大乘积?

这是一个动态规划问题,就是通过组合子问题的解来求原问题的解;

算法设计步骤:

  1. 刻画一个最优解的结构特征;

  2. 递归的定义最优解的值;

  3. 计算最优解的值,通常采用自底向上的方法;

  4. 利用计算出的信息构造一个最优解;

写几个数观察一下:

1    2    3 不可分,分割了乘积会比自己还小;

4 = 2 + 2;

5 = 2 + 3;

6 = 3 + 3;

7 = 3 + 4 = 3  + 2 + 2;

8 = 3 + 3 + 2;

9 = 3 + 3 + 3;

10 = 3 + 3 + 4 = 3 + 3 + 2 + 2;

规律总结:

任意元素大小不会超过4,因为4及4以上都可再分解;

多分3,其次2,不要1;

对任意一个数除以三,结果如下:

能整除;3 + 3 + 3 + ...... + 3;

余数为1;将最后一个三加一;分为3 + 3 +......+3 + 3 + 2 + 2;

余数为2;最后一个三后加2;3 + 3 +......+3 + 3 + 2;


代码实现:

public class Solution {
    public int cutRope(int target) {
        int a = 0;
        int c = 0;
        int maxValue = 2;
       if (target == 2) {
           return 1;
       }
       if (target == 3) {
           return 2;
       }
       if (target % 3 == 0) {
            maxValue = (int)Math.pow(3, target / 3);
       } else{
            a = target - 2;
            c = a % 3;
  
            maxValue = maxValue * (int)Math.pow(3, a / 3);
            if (0 != c) {
                maxValue = maxValue * c;
            }
       }
  
   
        return maxValue;
    }
}

 

在C++中,绳子问题是一个经典的动态规划问题。问题描述为:给定一根长度为n的绳子,要求将其剪成m(m>1),每段绳子长度记为k, k, ..., k[m-1],请问如何绳子使得各绳子的乘积最大? 解决这个问题的一种常见方法是使用动态规划。具体步骤如下: 1. 定义一个数组dp,其中dp[i]表示长度为i的绳子剪成若干后各绳子长度乘积的最大值。 2. 初始化dp数组,dp和dp都为0,因为长度为0和1的绳子无法断。 3. 从长度为2开始遍历到n,对于每个长度i,计算dp[i]的值。 - 遍历j从1到i-1,表示第一段绳子长度,可以取值范围为1到i-1。 - 计算第一段绳子长度为j时,剩余绳子长度为i-j。 - 计算当前情况下的乘积,即j * dp[i-j]。 - 更新dp[i]的值为所有情况中乘积最大的值。 4. 最终dp[n]即为所求的结果,表示长度为n的绳子剪成若干后各绳子长度乘积的最大值。 下面是绳子问题的C++代码示例: ```cpp #include <iostream> #include <vector> using namespace std; int cutRope(int n) { if (n <= 1) { return 0; } vector<int> dp(n + 1, 0); for (int i = 2; i <= n; i++) { for (int j = 1; j < i; j++) { dp[i] = max(dp[i], max(j * (i - j), j * dp[i - j])); } } return dp[n]; } int main() { int n = 8; int result = cutRope(n); cout << "将长度为" << n << "的绳子剪成若干后各绳子长度乘积的最大值为:" << result << endl; return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值