剪绳子

原题目:

给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m]。请问k[0]xk[1]x...xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。


题目分析:

题目本质上是给定一个自然数n,分为m个自然数,使其和为n,求m个自然数(数字可重复)的最大乘积?

这是一个动态规划问题,就是通过组合子问题的解来求原问题的解;

算法设计步骤:

  1. 刻画一个最优解的结构特征;

  2. 递归的定义最优解的值;

  3. 计算最优解的值,通常采用自底向上的方法;

  4. 利用计算出的信息构造一个最优解;

写几个数观察一下:

1    2    3 不可分,分割了乘积会比自己还小;

4 = 2 + 2;

5 = 2 + 3;

6 = 3 + 3;

7 = 3 + 4 = 3  + 2 + 2;

8 = 3 + 3 + 2;

9 = 3 + 3 + 3;

10 = 3 + 3 + 4 = 3 + 3 + 2 + 2;

规律总结:

任意元素大小不会超过4,因为4及4以上都可再分解;

多分3,其次2,不要1;

对任意一个数除以三,结果如下:

能整除;3 + 3 + 3 + ...... + 3;

余数为1;将最后一个三加一;分为3 + 3 +......+3 + 3 + 2 + 2;

余数为2;最后一个三后加2;3 + 3 +......+3 + 3 + 2;


代码实现:

public class Solution {
    public int cutRope(int target) {
        int a = 0;
        int c = 0;
        int maxValue = 2;
       if (target == 2) {
           return 1;
       }
       if (target == 3) {
           return 2;
       }
       if (target % 3 == 0) {
            maxValue = (int)Math.pow(3, target / 3);
       } else{
            a = target - 2;
            c = a % 3;
  
            maxValue = maxValue * (int)Math.pow(3, a / 3);
            if (0 != c) {
                maxValue = maxValue * c;
            }
       }
  
   
        return maxValue;
    }
}

 

发布了12 篇原创文章 · 获赞 0 · 访问量 2162
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 1024 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览