求最大间隔分离超平面如何转化为了一个凸二次优化的问题?

考虑如何求得一个几何间隔最大的分离超平面(函数间隔也是一样的),即最大间隔分离超平面,那么可以表示为下面的约束最优化问题:
m a x w , b   γ s . t . y i ( w ∣ ∣ w ∣ ∣ ⋅ x i + b ∣ ∣ w ∣ ∣ ) ≥ γ , i = 1 , 2 , . . . , N \mathop{max}\limits_{w,b}\space\gamma\\ s.t.\quad y_i\left({w\over||w||}\cdot x_i+{b\over||w||}\right)\geq\gamma, \quad i=1,2,...,N w,bmax γs.t.yi(wwxi+wb<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值