- 博客(241)
- 收藏
- 关注
原创 总结常用 tmux 命令(常用)
启动jupyter 服务不要直接用jupyter server命令,使用jupyter notebook 或者jupyter lab就可以。就可以正常连接了,再按 同时按 Ctrl+B 放开后 再按D 就能后台保持,浏览器就能正常连接了。如果输出一串类似 /tmp/tmux-1000/default,1234,0 的内容,就说明你正被一个 tmux server 管理(也就是在会话里)。📚 数据分析、深度学习、大模型与算法的综合进阶,尽在CSDN。如果什么都没输出(空行),说明你不在 tmux 会话中。
2025-06-12 11:30:53
162
原创 大模型学习应用 7: 基于LlamaIndex 的三种RAG实现方式
本文介绍了三种RAG(检索增强生成)实现方式,帮助开发者根据需求灵活选择。首先,默认RAG使用LlamaIndex的VectorStoreIndex结合OpenAI嵌入模型快速上手;其次,混合RAG在问答环节调用DeepSeek-Chat,向量化仍用OpenAI嵌入,实现性能优化;最后,全本地RAG使用DeepSeek问答和本地Hugging Face嵌入,实现纯本地化部署。此外,文章还简要探讨了其他可选方案,如全本地LLM、向量数据库升级及多模型混合等优化思路。通过逐步剖析和代码示例,开发者可根据资源与业
2025-06-11 21:58:32
792
原创 大模型学习应用 6: Vercel 部署 自动获取微信公众号文章获取 项目
本文详细介绍了如何在Vercel平台部署基于FastAPI的微信公众号草稿箱文章获取项目。项目通过微信开发者API实现,主要功能包括: 获取并缓存access_token 分页查询草稿箱文章 返回文章标题、链接、摘要等关键信息 🔧 部署步骤: 克隆GitHub仓库代码 在Vercel控制台配置APPID和APPSecret环境变量 完成自动化部署 ⚠️ 注意事项: 需将Vercel服务器IP加入微信白名单 免费版仅适合测试
2025-06-11 17:45:21
528
原创 大模型学习应用 5: Vercel 部署 Python FastAPI 项目完整指南
本文详细介绍了在Vercel平台部署Python FastAPI项目的完整流程,包括项目结构配置、核心代码实现、GitHub部署准备、Vercel部署步骤以及常见问题解决方案。重点演示了如何配置vercel.json路由、FastAPI应用开发技巧和避免Mangum适配器导致的错误。通过提供健康检查、应用信息等多个API端点示例,帮助开发者快速验证部署可行性。文章还包含本地测试方法和版本依赖管理建议,为后续更复杂的服务部署奠定基础。
2025-06-11 09:44:40
864
原创 ChatGPTNextChat项目重构计划(九):NextChat 解析API路由处理逻辑 stream.ts
此文件的主要作用是在Tauri环境中,封装一个自定义的流式网络请求函数fetch,替代浏览器原生的fetch函数,以实现通过Tauri后端与外部API交互。在Tauri环境中使用后端的命令发起HTTP请求。监听Tauri后端返回的流式事件()逐步接收数据块。将接收到的数据流封装成浏览器标准的Response对象。在非Tauri环境中回退到原生fetch函数。id: number;: number;chunk?: number[];
2025-05-20 18:02:35
1015
原创 ChatGPTNextChat项目重构计划(八):NextChat 解析API路由处理逻辑 chat.ts
图片压缩和处理预处理包含图片的消息图片上传和缓存处理实现流式响应(逐步返回模型生成结果),并处理模型调用函数(Tools)以及思考(think)模式显示。图片处理(压缩、缓存、上传)流式响应实现(动态展示模型结果)工具调用(function calling)处理模型“思考模式”特殊处理逻辑通过以上详细解析,可以帮助大家深入掌握 NextChat 客户端与服务端流式交互与数据处理的具体实现细节!
2025-05-20 17:54:28
695
原创 ChatGPTNextChat项目重构计划(七):NextChat 解析API路由处理逻辑 common.ts
请求代理函数接收 HTTP 请求(Next.js判断请求类型(OpenAI 或 Azure 等)构造转发请求的 URL 与头信息对特定模型进行访问控制发送请求至 OpenAI 或其他服务商处理响应(如移除敏感头信息)返回响应给客户端请求 → 判断服务(Azure/OpenAI) → 验证模型权限 →构造转发请求 → 发起请求 → 处理响应 → 返回客户端以上详细解析帮助大家彻底理解 NextChat 项目的核心请求转发机制。
2025-05-19 14:56:10
1041
原创 ChatGPTNextChat项目重构计划(六):NextChat 解析API路由处理逻辑 auth.ts
在 NextChat 项目中,auth.ts用于实现对 API 请求的身份认证,验证请求者是否合法:获取并解析请求中的鉴权信息(如 Access Code 或 API Key)。检查服务器端配置(例如是否需要 Access Code,是否允许用户使用自己的 API Key)。验证鉴权信息有效性(如检查 Access Code 是否匹配)。根据情况为请求注入系统预设的 API Key。!apiKey) {return {若服务器配置了禁止用户自带 API Key (
2025-05-19 14:48:11
1030
原创 ChatGPTNextChat项目重构计划(五):NextChat 解析API路由处理逻辑 openai.ts
当请求进入 NextChat 项目的 OpenAI 接口时(例如...接收 HTTP 请求(req验证请求方法(如OPTIONS请求特殊处理)。检查请求路径(是否允许调用的 OpenAI API 子路径)。进行权限认证(调用auth()将请求转发给 OpenAI(调用特殊处理(例如,列出模型时进行额外过滤)。返回响应。HTTP请求进入│├── OPTIONS请求?──→ 直接返回OK│├── 路径合法性检查 ──不合法→ 403 Forbidden│。
2025-05-16 17:02:41
665
原创 ChatGPTNextChat项目重构计划(四):NextChat 解析API路由处理逻辑 route.ts
NextChat 项目使用Next.js动态路由捕获API请求,根据提供商(provider)不同,将请求分发到专门的处理器(handler)进行处理。无论请求GET或POST,统一处理并返回。未识别的请求默认走代理handler(这是一种清晰的多提供商支持设计模式,方便扩展和维护。
2025-05-16 16:48:38
899
原创 ChatGPTNextChat项目重构计划(三):NextChat API 文档测试总结
请求方法: POST请求格式:{{"role": "system", "content": "你是一个助手"},{"role": "user", "content": "你好"}],响应格式流式响应(stream=true):data: {"id":"chatcmpl-xxx","object":"chat.completion.chunk","choices":[{"delta":{"content":"你好"},"index":0}]}...非流式响应。
2025-05-15 14:23:44
1168
原创 ChatGPTNextChat项目重构计划(二):深入分析NextChat API交互
HeadersPayloadResponse都在 Network 面板的单条请求详情里。你可以对比官方文档,确认参数和返回格式是否符合预期。如果有异常,可以截图这些内容,便于排查问题。
2025-05-15 14:20:24
723
原创 ChatGPTNextChat项目重构计划(一):建立开发环境
🚀大模型落地开发实战指南!深入浅出,助你轻松入门!📚 数据分析、深度学习、大模型与算法的综合进阶,尽在CSDN。
2025-05-14 15:11:33
659
原创 ChatGPTNextChat项目运行跑通
《大模型落地开发实战指南》提供了详细的步骤,帮助开发者轻松入门大模型开发。首先,使用Conda创建一个名为nextchat的虚拟环境,并安装Node.js和Yarn。接着,克隆NextChat项目到本地,安装项目依赖,并配置必要的环境变量。最后,通过运行开发服务器或构建生产版本来启动项目。使用Conda的好处在于它提供了一个独立的Node.js环境,避免依赖冲突,并方便管理不同版本的Node.js。更多详细内容可关注微信公众号「AGI启程号」或访问CSDN博客主页。
2025-05-14 10:49:55
884
原创 工作效率提升:SSH 公钥并把它添加到 GitHub
🚀大模型落地开发实战指南!深入浅出,助你轻松入门!📚 数据分析、深度学习、大模型与算法的综合进阶,尽在CSDN。
2025-05-13 14:54:15
887
原创 深度学习每周学习总结Y2(Yolov5 使用自己的数据集进行训练 )
本期我们使用自己的数据进行训练,训练过程中遇到种种问题,但都有解决,现在已经可以正常跑起来了,值得注意的一点是,由于是新建的虚拟环境,cuda似乎没有利用起来,后续需要再研究一下。YOLO(You Only Look Once)是一种非常流行的目标检测算法,用于从图像或视频中实时识别物体。与传统的目标检测方法不同,YOLO将目标检测任务转化为回归问题,在一个单独的神经网络中同时完成物体的定位和分类。因此,YOLO的主要特点是高效、实时,并且能够处理复杂的场景。图像分割:将输入图像分为多个网格。
2025-02-28 11:29:36
1039
原创 深度学习每周学习总结Y1(Yolov5 调用官方权重进行检测 )
YOLO(You Only Look Once)是一种非常流行的目标检测算法,用于从图像或视频中实时识别物体。与传统的目标检测方法不同,YOLO将目标检测任务转化为回归问题,在一个单独的神经网络中同时完成物体的定位和分类。因此,YOLO的主要特点是高效、实时,并且能够处理复杂的场景。图像分割:将输入图像分为多个网格。边界框预测:每个网格预测一定数量的边界框,每个边界框包含物体的坐标、宽高以及该物体的类别概率。目标分类与置信度。
2025-02-21 02:36:20
1031
原创 深度学习每周学习总结R6(RNN实现阿尔茨海默病诊断)
数据导入及处理部分:在 PyTorch 中,我们通常先将 NumPy 数组转换为 torch.Tensor,再封装到 TensorDataset 或自定义的 Dataset 里,然后用 DataLoader 按批次加载。模型构建部分:RNN设置超参数:在这之前需要定义损失函数,学习率(动态学习率),以及根据学习率定义优化器(例如SGD随机梯度下降),用来在训练中更新参数,最小化损失函数。定义训练函数:函数的传入的参数有四个,分别是设置好的DataLoader(),定义好的模型,损失函数,优化器。
2025-02-11 23:35:29
1496
原创 深度学习每周学习总结R5(LSTM-实现糖尿病探索与预测-模型优化)
数据导入及处理部分:在 PyTorch 中,我们通常先将 NumPy 数组转换为 torch.Tensor,再封装到 TensorDataset 或自定义的 Dataset 里,然后用 DataLoader 按批次加载。模型构建部分:LSTM设置超参数:在这之前需要定义损失函数,学习率(动态学习率),以及根据学习率定义优化器(例如SGD随机梯度下降),用来在训练中更新参数,最小化损失函数。定义训练函数:函数的传入的参数有四个,分别是设置好的DataLoader(),定义好的模型,损失函数,优化器。
2025-01-24 21:44:32
1317
原创 深度学习每周学习总结R4(LSTM-实现糖尿病探索与预测)
数据导入及处理部分:在 PyTorch 中,我们通常先将 NumPy 数组转换为 torch.Tensor,再封装到 TensorDataset 或自定义的 Dataset 里,然后用 DataLoader 按批次加载。模型构建部分:LSTM设置超参数:在这之前需要定义损失函数,学习率(动态学习率),以及根据学习率定义优化器(例如SGD随机梯度下降),用来在训练中更新参数,最小化损失函数。定义训练函数:函数的传入的参数有四个,分别是设置好的DataLoader(),定义好的模型,损失函数,优化器。
2025-01-13 09:33:35
1320
原创 工作效率提升:使用Anaconda Prompt 创建虚拟环境总结
通过上述步骤,可以在D盘创建并使用 Conda 虚拟环境,同时确保 Jupyter Notebook 能够正确调用该环境中的 Python 解释器。这样做不仅避免了修改系统环境变量的问题,还能更好地管理和组织您的开发环境。如果在操作过程中遇到任何问题,请随时提供详细信息,我将进一步协助您解决。
2025-01-10 16:59:42
1083
原创 深度学习每周学习总结R3(LSTM-火灾温度预测)
数据导入及处理部分:在 PyTorch 中,我们通常先将 NumPy 数组转换为 torch.Tensor,再封装到 TensorDataset 或自定义的 Dataset 里,然后用 DataLoader 按批次加载。模型构建部分:LSTM设置超参数:在这之前需要定义损失函数,学习率(动态学习率),以及根据学习率定义优化器(例如SGD随机梯度下降),用来在训练中更新参数,最小化损失函数。定义训练函数:函数的传入的参数有四个,分别是设置好的DataLoader(),定义好的模型,损失函数,优化器。
2025-01-09 10:54:52
1012
原创 个人网站建设记录(持续更新中)
首先是购买域名,然后再逐步开发测试个人网站 ,建立一个空白网站,逐步添加功能,比如做一个根据上传文件进行RAG+大模型问答的服务。
2024-12-31 17:45:04
368
原创 深度学习每周学习总结R2(RNN-天气预测)
数据导入及处理部分:在 PyTorch 中,我们通常先将 NumPy 数组转换为 torch.Tensor,再封装到 TensorDataset 或自定义的 Dataset 里,然后用 DataLoader 按批次加载。模型构建部分:RNN设置超参数:在这之前需要定义损失函数,学习率(动态学习率),以及根据学习率定义优化器(例如SGD随机梯度下降),用来在训练中更新参数,最小化损失函数。定义训练函数:函数的传入的参数有四个,分别是设置好的DataLoader(),定义好的模型,损失函数,优化器。
2024-12-31 14:28:01
1400
原创 深度学习每周学习总结R1(RNN-心脏病预测)
数据导入及处理部分:在 PyTorch 中,我们通常先将 NumPy 数组转换为 torch.Tensor,再封装到 TensorDataset 或自定义的 Dataset 里,然后用 DataLoader 按批次加载。模型构建部分:RNN设置超参数:在这之前需要定义损失函数,学习率(动态学习率),以及根据学习率定义优化器(例如SGD随机梯度下降),用来在训练中更新参数,最小化损失函数。定义训练函数:函数的传入的参数有四个,分别是设置好的DataLoader(),定义好的模型,损失函数,优化器。
2024-12-27 00:59:02
1216
原创 深度学习每周学习总结J9(Inception V3 算法实战与解析 - 天气识别)
数据导入及处理部分:本次数据导入没有使用torchvision自带的数据集,需要将原始数据进行处理包括数据导入,查看数据分类情况,定义transforms,进行数据类型转换等操作。划分数据集:划定训练集测试集后,再使用torch.utils.data中的DataLoader()分别加载上一步处理好的训练及测试数据,查看批处理维度.模型构建部分:Inception V3。
2024-12-19 21:58:49
813
原创 大模型学习应用 4: 搭建openai代@理(Vercel)
有意义的场景优化访问速度如果你所在的地区访问 OpenAI 的 API 存在网络延迟或不稳定的问题,搭建代@理可以通过更优的网络路径提升访问速度和稳定性。简化 API 调用通过代理,你可以对 OpenAI 的 API 请求进行统一管理,比如添加默认参数、日志记录或限流机制,简化前端调用逻辑。隐藏 API Key部署代@理可以保护你的 OpenAI API Key,避免直接暴露在客户端(如前端应用),减少被滥用的风险。功能扩展。
2024-12-06 15:56:35
758
原创 深度学习每周学习总结J8(Inception V1 算法实战与解析 - 猴痘识别)
数据导入及处理部分:本次数据导入没有使用torchvision自带的数据集,需要将原始数据进行处理包括数据导入,查看数据分类情况,定义transforms,进行数据类型转换等操作。划分数据集:划定训练集测试集后,再使用torch.utils.data中的DataLoader()分别加载上一步处理好的训练及测试数据,查看批处理维度.模型构建部分:Inception V1。
2024-12-06 09:52:22
1207
原创 深度学习每周学习总结J7(对ResNeXt-50 算法的思考)
当时,代码中未对通道数进行显式对齐,存在潜在问题。如果通道数确实一致,可能是前面的代码已经对输入通道数做了隐式约束。最好在代码中显式处理通道对齐问题,确保逻辑自洽,避免因意外输入导致错误。在else:如果shortcut使用一个 1x1 卷积升维(或降维)来使通道数从变为。如果shortcut是,即直接复制输入数据,不会对输入张量的通道数进行任何修改。这意味着当时,shortcut的通道数与输入x的通道数是完全相同的。TensorFlow 版本存在潜在问题:未显式保证残差连接中。
2024-11-29 11:08:31
1249
原创 深度学习每周学习总结J6(ResNeXt-50 算法实战与解析 - 猴痘识别)
数据导入及处理部分:本次数据导入没有使用torchvision自带的数据集,需要将原始数据进行处理包括数据导入,查看数据分类情况,定义transforms,进行数据类型转换等操作。划分数据集:划定训练集测试集后,再使用torch.utils.data中的DataLoader()分别加载上一步处理好的训练及测试数据,查看批处理维度.模型构建部分:DenseNet-121 + SE模块。
2024-11-22 17:32:40
1053
原创 深度学习每周学习总结J5(DenseNet-121 +SE 算法实战与解析 - 猴痘识别)
数据导入及处理部分:本次数据导入没有使用torchvision自带的数据集,需要将原始数据进行处理包括数据导入,查看数据分类情况,定义transforms,进行数据类型转换等操作。划分数据集:划定训练集测试集后,再使用torch.utils.data中的DataLoader()分别加载上一步处理好的训练及测试数据,查看批处理维度.模型构建部分:DenseNet-121 + SE模块。
2024-11-15 17:27:29
947
3
原创 深度学习每周学习总结J4(DPN 算法探索实践 - 鸟类识别)
对于卷积新的理解:我之前的误解是错误以为有几个卷积核,就有几个权重矩阵。比如输入通道数为3,输出通道数为2,我误以为只有两个权重矩阵。但其实对于一个卷积层来说,卷积核的数量等同于输出通道数(也称为输出的特征图数)。如果输入通道数为3,输出通道数为2,那么根据卷积操作的定义,每个输出通道对应一个单独的卷积核组。每个卷积核组由数量等于输入通道数的权重矩阵组成,因此在这个例子中,实际上有3×263×2=63×26个权重矩阵(即每个输出通道有3个权重矩阵,与输入通道数相对应)。
2024-11-01 19:35:07
872
原创 深度学习每周学习总结J3(DenseNet-121算法实战与解析 - 鸟类识别)
数据导入及处理部分:本次数据导入没有使用torchvision自带的数据集,需要将原始数据进行处理包括数据导入,查看数据分类情况,定义transforms,进行数据类型转换等操作。划分数据集:划定训练集测试集后,再使用torch.utils.data中的DataLoader()分别加载上一步处理好的训练及测试数据,查看批处理维度.模型构建部分:DenseNet-121。
2024-10-18 18:19:54
1237
原创 深度学习每周学习总结J2(ResNet-50v2算法实战与解析 - 鸟类识别)
数据导入及处理部分:本次数据导入没有使用torchvision自带的数据集,需要将原始数据进行处理包括数据导入,查看数据分类情况,定义transforms,进行数据类型转换等操作。划分数据集:划定训练集测试集后,再使用torch.utils.data中的DataLoader()分别加载上一步处理好的训练及测试数据,查看批处理维度.模型构建部分:resnet-50v2。
2024-10-10 22:00:00
1985
原创 深度学习每周学习总结J1(ResNet-50算法实战与解析 - 鸟类识别)
数据导入及处理部分:本次数据导入没有使用torchvision自带的数据集,需要将原始数据进行处理包括数据导入,查看数据分类情况,定义transforms,进行数据类型转换等操作。划分数据集:划定训练集测试集后,再使用torch.utils.data中的DataLoader()分别加载上一步处理好的训练及测试数据,查看批处理维度.模型构建部分:resnet-50。
2024-10-04 20:50:17
1464
1
原创 深度学习每周学习总结N11:Transformer实战:文本分类 - Embedding版
使用 partial 函数创建 collate_fn,传入参数# 创建一个大小为 [max_len, embed_dim] 的零张量# 创建一个形状为 [max_len, 1] 的位置索引张量pe[:, 0::2] = torch.sin(position * div_term) # 计算 PE(pos, 2i)pe[:, 1::2] = torch.cos(position * div_term) # 计算 PE(pos, 2i+1)
2024-09-20 20:21:07
1155
原创 深度学习每周学习总结N10:Transformer实战:文本分类
创建一个大小为 [max_len, embed_dim] 的零张量# 创建一个形状为 [max_len, 1] 的位置索引张量pe[:, 0::2] = torch.sin(position * div_term) # 计算 PE(pos, 2i)pe[:, 1::2] = torch.cos(position * div_term) # 计算 PE(pos, 2i+1)# 将位置编码张量注册为模型的缓冲区,参数不参与梯度下降,保存model的时候会将其保存下来。
2024-09-13 19:30:46
1054
1
原创 深度学习每周学习总结N9:transformer复现
3:Word2Vec(词向量(Word Embedding) 以及Word2vec(Word Embedding 的方法之一))N9期,transformer的代码复现,注释里加入了一些理解,但是对transformer的网络结构的理解还需加强。N4期将主要介绍中文基本分类(熟悉流程)、拓展:textCNN分类(通用模型)、拓展:Bert分类(模型进阶)N7期,需要理解RNN 及 seq2seq代码,并在此基础上成功运行代码,理解代码流程。使用来说,如果需要在神经网络中处理变长序列的嵌入,可以选择。
2024-09-06 18:50:00
1177
原创 大模型学习应用 3: AutoDL 平台 transformers 环境搭建及模型部署使用(持续更新中)
之前我们学习了在和鲸的预配置好的平台上进行学习,在工作中并不现实,本期我们的目标是将已有模型部署到云端进行运行配置环境:RTX 4090D(24GB) python 3.12(ubuntu22.04)
2024-08-28 18:38:15
2518
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人