【Java API接口限流的几种实现方式】

如果你觉得这篇文章对你有帮助,请不要吝惜你的“关注”、“点赞”、“评价”、“收藏”,你的支持永远是我前进的动力~~~

Java API接口限流:概念、实现与示例

在高并发的互联网应用中,API接口限流是一种重要的保护机制,它通过控制单位时间内的请求数量来防止系统过载,确保服务的稳定性和可用性。本文将介绍Java中API接口限流的概念、实现方式,并提供一个简单的Java示例。

1. 限流的概念

限流(Rate Limiting)是指在一定时间范围内限制请求的处理速率,以避免系统因请求过多而崩溃。限流策略可以基于不同的维度,如IP地址、用户账号、服务接口等。

2. 限流的实现方式

2.1 Guava RateLimiter

Guava库提供了一个简单而强大的限流工具RateLimiter,它基于令牌桶算法实现。RateLimiter可以创建一个速率限制器,用于控制某个代码段的执行速率。

集成步骤:

  • 引入依赖:在Spring Boot项目中引入Guava依赖。
    <dependency>
        <groupId>com.google.guava</groupId>
        <artifactId>guava</artifactId>
        <version>32.0.1-jre</version>
    </dependency>
    
  • 创建RateLimiter实例:在服务类或控制器中创建RateLimiter实例。
    import com.google.common.util.concurrent.RateLimiter;
    
    public class RateLimiterService {
        private final RateLimiter rateLimiter = RateLimiter.create(5.0); // 每秒允许5个请求
        public void executeLimitedService() {
            rateLimiter.acquire(); // 阻塞直到获取一个许可
            System.out.println("执行业务逻辑");
        }
    }
    

2.2 Sentinel 限流

Sentinel是阿里巴巴开源的分布式系统流量防卫组件,它提供了丰富的流量控制功能,包括QPS(每秒查询率)限制。

代码示例:

  • Sentinel限流注解
    @Aspect
    @Component
    public class SentinelLimitRateAspect {
        @Pointcut(value = "@annotation(com.hcr.sbes.limit.sentinel.SentinelLimitRateAnnotation)")
        public void rateLimit() {}
        
        @Around("rateLimit()")
        public Object around(ProceedingJoinPoint joinPoint) {
            Method currentMethod = getCurrentMethod(joinPoint);
            String resourceName = currentMethod.getAnnotation(SentinelLimitRateAnnotation.class).resourceName();
            int limitCount = currentMethod.getAnnotation(SentinelLimitRateAnnotation.class).limitCount();
            initFlowRule(resourceName, limitCount);
            Entry entry = null;
            Object result = null;
            try {
                entry = SphU.entry(resourceName);
                result = joinPoint.proceed();
            } catch (BlockException ex) {
                return "被限流了";
            } finally {
                if (entry != null) {
                    entry.exit();
                }
            }
            return result;
        }
    }
    
  • 测试接口
    @GetMapping("/limitBySentinel")
    @SentinelLimitRateAnnotation(resourceName = "测试限流2", limitCount = 1)
    public String limitBySentinel() {
        return "limitBySentinel";
    }
    

2.3 Redis + Lua 限流

Redis是一个高性能的键值存储系统,结合Lua脚本可以实现分布式限流。

代码示例:

  • Lua脚本
    redis.replicate_commands();
    local listLen, time = redis.call('LLEN', KEYS[1])
    if listLen and tonumber(listLen) < tonumber(ARGV[1]) then
        local a = redis.call('TIME');
        redis.call('LPUSH', KEYS[1], a[1]*1000000+a[2])
    else
        time = redis.call('LINDEX', KEYS[1], -1)
        local a = redis.call('TIME');
        if a[1]*1000000+a[2] - time < tonumber(ARGV[2])*1000000 then
            return 0;
        else
            redis.call('LPUSH', KEYS[1], a[1]*1000000+a[2])
            redis.call('LTRIM', KEYS[1], 0, tonumber(ARGV[1])-1)
        end
    end
    return 1;
    
  • Java调用
    public Object around(ProceedingJoinPoint pjp) {
        MethodSignature methodSignature = (MethodSignature)pjp.getSignature();
        Method method = methodSignature.getMethod();
        RedisLimit annotation = method.getAnnotation(RedisLimit.class);
        LimitType limitType = annotation.limitType();
        String name = annotation.name();
        String key;
        int period = annotation.period();
        int count = annotation.count();
        // 省略获取key和调用Lua脚本的代码...
    }
    

3. 结论

API接口限流是保护后端服务不受过多请求冲击的有效手段。通过Guava的RateLimiter、Sentinel以及Redis+Lua等技术,我们可以在Java应用中实现高效且稳定的限流策略。这些方法各有优势,可以根据具体的业务场景和需求选择合适的限流方案。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吴昌泰WCT

您的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值