矩阵归一化:
实际上就是向量的单位化,就是把向量的模变换为1,用公式表示即u∣∣u∣∣\frac{u}{||u||}∣∣u∣∣u。
x=matrix(c(3,7,2,4,8,9,5,3,7),3,3)
numerator=sqrt(apply(x^2,1,sum))
xx=x/numerator
judge=apply(xx^2,1,sum)
Lalacian的归一化:
L=D−1/2LD−1/2=D−1/2(D−W)D−1/2=I−D−1/2WD−1/2L=D^{-1/2}LD^{-1/2}=D^{-1/2}(D-W)D^{-1/2}=I-D^{-1/2}WD^{-1/2}L=D−1/2LD−1/2=D−1/2(D−W)D−1/2=I−D−1/2WD−1/2,其中,DDD是度矩阵,WWW是权重矩阵。
矩阵归一化是将向量单位化的数学操作,确保向量的模长变为1。在拉普拉斯正则化中,通过D^(-1/2)(D-W)D^(-1/2)的公式进行归一化,其中D是度矩阵,W是权重矩阵,这种处理常用于网络分析和图论中。
8132

被折叠的 条评论
为什么被折叠?



