YOLO
文章平均质量分 59
勤慎诚恕
这个作者很懒,什么都没留下…
展开
-
YOLOv1 反向传播
目标检测是监督学习的问题,监督学习的训练是通过梯度下降和反向传播的方法迭代地去微调神经元中的权重使得损失函数最小化的过程。训练集中需要人工利用标注工具对训练图片进行各类加框标注,而我们算法就是让我们预测结果尽量拟合这个人工标注框,使得损失函数最小化。人工正确标注框为ground truth,即标准答案。绿框中心点所在的grid cell的2个bounding box中其中一个需要来负责来拟合这个ground truth,并且这个grid cell输出的最大权概率的类别也必须是这个groun原创 2021-08-17 22:14:56 · 553 阅读 · 0 评论 -
YOLOv1 前向推断后处理——NMS非极大值抑制
每个grid cell包含2个bounding box(每个bounding box包含4个box位置坐标和1个box置信度) 和20个类别的条件概率。将box置信度和20个类别的条件概率分别相乘,得到一个权概率(形状20*1)因此每个bounding box有一个权概率,1一个grid cell有2个权概率,总共输出有7*7*2=98个权概率(上图竖条)把98个权概率分别以颜色(类别)和粗细(box置信度)加持,可视化就得到了中间的98个框接下来是正题——后处理,把98个...原创 2021-08-15 15:34:36 · 1885 阅读 · 0 评论 -
YOLOv1 前向推断
输入图像先缩放成448*448的3通道图像,经过若干卷积和池化提取图像特征,通过两个全连接层得到7*7*30的tensor。输出的到的7*7*30的tensor,其中的7指的是图像网格化得到7*7的grid cell,30指的是每个grid cell有2个bounding box,每个bounding box有4个位置相关数据(x,y,w,h)中心坐标和宽高来确定box和1个box置信度,还有20个类别的条件概率,因此是2*(4+1)+20=30,最终得到7*7*(2*(4+1)+20...原创 2021-08-15 15:33:05 · 362 阅读 · 0 评论