Gamma函数

Gamma函数是由阶乘函数 n ! n! n!拓展到实数域。

Γ ( x ) = ∫ 0 + ∞ t x − 1 e − t d x \Gamma (x)= \int _{0} ^{+ \infty} t^{x-1} e^{-t}dx Γ(x)=0+tx1etdx

阶乘性质

Γ ( x + 1 ) = x Γ ( x ) \Gamma(x+1)= x\Gamma(x) Γ(x+1)=xΓ(x)

证明:

利用分部积分法:

Γ ( x ) = ∫ 0 + ∞ t x − 1 e − t d x = 1 x t x e − t ∣ 0 + ∞ − ∫ 0 + ∞ 1 x t x ( − e − t ) d t = ∫ 0 + ∞ 1 x t x ( e − t ) d t = 1 x ∫ 0 + ∞ t x ( e − t ) d t = 1 x Γ ( x + 1 ) \Gamma (x)= \int _{0} ^{+ \infty} t^{x-1} e^{-t}dx = \left. \frac{1}{x} t^x e^{-t} \right|_0^{+\infty} - \int_{0} ^{+ \infty} \frac{1}{x} t^x (-e^{-t})dt \\ =\int_{0} ^{+ \infty} \frac{1}{x} t^x (e^{-t})dt=\frac{1}{x} \int_{0} ^{+ \infty} t^x (e^{-t})dt =\frac{1}{x}\Gamma(x+1) Γ(x)=0+tx1etdx=x1txet0+0+x1tx(et)dt=0+x1tx(et)dt=x10+tx(et)dt=x1Γ(x+1)

对于正整数n采用如下:

Γ ( n ) = ( n − 1 ) ! Γ ( 1 ) \Gamma(n) = (n-1)! \Gamma(1) Γ(n)=(n1)!Γ(1)

重要值

几个重要值:

余元公式

Γ ( 1 2 ) = π \Gamma(\frac{1}{2}) = \sqrt \pi Γ(21)=π

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值