Description:
Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2⌋ times.
You may assume that the array is non-empty and the majority element always exist in the array.
这题就是求一个数组中超过1/2的元素,题目并不难。但是这一题有很多种解法,leetcode上就给出了7种解法,这些解法的思想是最让人受益的。
Solution:
1.暴力解法:
统计每个元素出现的次数,可以直接得出结果,明显复杂度为O(n²)。
2.哈希
用哈希表对数组中的每个元素计数,时间复杂度和空间复杂度都是O(n)。
3.排序
可以使用快排找到第n/2个元素,必然是所求的元素。时间复杂度为O(nlogn)。
4.随机算法
随机获取一个元素,并判断该元素是不是Majority Element,若是则返回该元素,若不是则再进行随机选取。这个方法主要是基于Majority Element的个数大于⌊ n/2⌋,因此每次都有大于1/2的概率获取到所求的元素。由于选中多数元素的概率大于1/2,尝试次数的期望<2。时间复杂度为O(n)。
5.分治法
将数组分成两半,分别递归查找这两部分的多数元素,若两者相同,则为多数元素,若不同,则其中之一必为多数元素,判断其一即可。时间复杂度为O(nlogn)。
6.Moore voting algorithm
从头开始遍历数组,将第一个元素设置为当前元素,设置一个计数器count=0,若下一个元素与当前元素相等则将count+1,否则count-1,若count为0,则将目前遍历的元素设置为当前元素,继续遍历。遍历结束后保留的当前元素即为众数。只需要遍历一遍数组,时间复杂度为O(n)。
7.Bit manipulation
需要32个计数器,每个计数器记录所有数组某一位的 1的数目,由于多数元素一定存在,那么 1的数目和 0的数目必然不同,多者即为多数元素那一位的取值。时间复杂度还是O(n)。
//16ms
class Solution {
public:
int majorityElement(vector<int>& nums) {
int count = 1;
int result = nums[0];
for (int i = 1; i < nums.size(); i++) {
if (nums[i] == result) {
count++;
} else {
count--;
}
if (count < 0) {
result = nums[i];
count = 1;
}
}
return result;
}
};
这个是上面第6种方法,我觉得最简单的方法。
//23ms
class Solution {
public:
int majorityElement(vector<int>& nums) {
if(nums.size()==1) return nums[0];
map<int,int> hashTables;
for (int i = 0; i < nums.size(); i++ ) {
if (hashTables.count(nums[i])) {
hashTables[nums[i]]++;
if (hashTables[nums[i]]*2 > nums.size()) {
return nums[i];
}
} else {
hashTables[nums[i]] = 1;
}
}
}
};
//33ms
int majorityElement(vector<int>& nums) {
if(nums.size()==1) return nums[0];
vector<int> vec1(nums.begin(),nums.begin()+nums.size()/2);
int me1=majorityElement(vec1);
vector<int> vec2(nums.begin()+nums.size()/2,nums.end());
int me2=majorityElement(vec2);
if(me1==me2) return me1;
else{
int cnt=0;
for(int i=0;i<nums.size();++i)
if(me1==nums[i]) cnt++;
if(cnt>nums.size()/2) return me1;
return me2;
}
}