机器学习
Eminem1147
NJU SE Master
展开
-
Machine Learning in Action_CH2_1_kNN
from numpy import *import operatordef createDataBase(): group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]]) labels = ['A', 'A', 'B', 'B'] return group, labelsdef classify0(inX,原创 2017-04-19 21:30:06 · 266 阅读 · 0 评论 -
CS231n assignment 代码 + 笔记
CS231n 代码 + 笔记:我的GitHub原创 2018-10-04 13:13:26 · 633 阅读 · 0 评论 -
机器学习经典论文
以下内容来自转载:Active LearningTwo Faces of Active Learning756, Dasgupta, 2011 Active Learning Literature Survey155, Settles, 2010 ApplicationsA Survey of Emerging Approaches to Spam Filtering157...转载 2018-09-16 11:07:28 · 707 阅读 · 0 评论 -
EM算法
以下内容来自转载:1. 摘要EM(Expectation-Maximum)算法也称期望最大化算法,曾入选“数据挖掘十大算法”中,可见EM算法在机器学习、数据挖掘中的影响力。EM算法是最常见的隐变量估计方法,在机器学习中有极为广泛的用途,例如常被用来学习高斯混合模型(Gaussian mixture model,简称GMM)的参数;隐式马尔科夫算法(HMM)、LDA主题模型的变分推断等等。本...转载 2018-09-05 18:55:36 · 563 阅读 · 0 评论 -
极大似然估计
以下来自转载:极大似然估计 以前多次接触过极大似然估计,但一直都不太明白到底什么原理,最近在看贝叶斯分类,对极大似然估计有了新的认识,总结如下:贝叶斯决策 首先来看贝叶斯分类,我们都知道经典的贝叶斯公式: 其中:p(w):为先验概率,表示每种类别分布的概率;:类条件概率,表示在某种类别前提下,某事发生的概率;而为后验概率,表示某事发生了,并且它属于某一类别...转载 2018-04-09 18:51:36 · 300 阅读 · 1 评论 -
Machine Learning in Action_CH2_3_使用kNN手写数字识别
from numpy import *import operatorfrom os import listdir# kNNdef classify0(inX, dataSet, labels, k): dataSetSize = dataSet.shape[0] # 获得向量第一维长度 diffMat = tile(inX, (dataSetSize, 1)) - dat原创 2017-04-27 15:48:19 · 307 阅读 · 0 评论 -
Machine Learning in Action_CH2_2_使用kNN改进约会网站的配对效果
from numpy import *import operator# 创建数据def createDataBase(): group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]]) # numpy向量 labels = ['A', 'A', 'B', 'B'] # 列表 return group, label原创 2017-04-27 08:56:38 · 370 阅读 · 0 评论 -
Softmax算法实现
数据集MNIST。#!/usr/bin/env python3# -*- coding: utf-8 -*-import timeimport mathimport randomimport numpy as npimport pandas as pdfrom sklearn.model_selection import train_test_splitclass S...原创 2018-11-11 23:01:25 · 585 阅读 · 0 评论