基于灰度模板匹配:
原理: 图像的灰度信息
优点: 1:搜索对象有轻微的变形,大量的纹理,线性照明变化非常敏感。图像模糊等场合
2:速度快,精度低
缺点: 1:NCC对图像中的遮挡和杂波以及非线性照明变化非常敏感。
2:如果应在遮挡、杂波或非线性照明变化的情况下效果偏差
基于形状模板匹配
原理: 是基于边缘方向梯度的匹配。该方法是以物体边缘的梯度相关性为 匹配标准,提取兴趣区区域内的边缘特征,根据模板的大小和清晰度要求生成多层次的图象金字塔模型,接着再图像金字塔层自上而下逐层搜索模板图像,直至搜索到底层或者确定的匹配结果为止
优点: 形状模板是最常用,最有效,最快速的匹配方法,对很多的干扰因素不敏感,如光照和图像灰度发生变化,甚至支持局部边缘缺失杂乱场景,噪声,失焦,轻微变形
缺点: 不适用于旋转和缩放比较大的情况
基于描述符模板匹配:
原理: 基于特征点/关键点匹配
优点: Halcon基于描述符的模板检测原理类似于SIFT算法。同样是提前关键点,模板与轮廓无关,它的模板不是根据边缘轮廓创建的,而是根据特征点创建的,例如:例如:点的位置或者相邻像素的灰度信息可以作为描述符。有纹理的平面图开非常适用于这种方法,尤其是对于旋转倾斜等场景中的匹配可以得到非常理想的结果。基于描述符的匹配允许一定程度的透边视形变,并且能在有标定无标定的图像天关行,这子船球任的匹现与物体的经院2与目标的致理您切相关,或说与目标的特征点相关的模板匹配只能用于有纹理的图像。
缺点: 创建基于描述符的模板这一步会比较耗时,所用的时间与纹理的复杂度有关
大家有兴趣关注我的B站(缺陷检测-老羊头)UID:3493081175296589 ,我会不定期录制一些课程,相互交流学习