机器视觉Halcon之模板匹配总结和归纳

基于灰度模板匹配:

原理:   图像的灰度信息

优点:   1:搜索对象有轻微的变形,大量的纹理,线性照明变化非常敏感。图像模糊等场合

           2:速度快,精度低

缺点:   1:NCC对图像中的遮挡和杂波以及非线性照明变化非常敏感。

           2:如果应在遮挡、杂波或非线性照明变化的情况下效果偏差

基于形状模板匹配

原理:    是基于边缘方向梯度的匹配。该方法是以物体边缘的梯度相关性为 匹配标准,提取兴趣区区域内的边缘特征,根据模板的大小和清晰度要求生成多层次的图象金字塔模型,接着再图像金字塔层自上而下逐层搜索模板图像,直至搜索到底层或者确定的匹配结果为止

优点:    形状模板是最常用,最有效,最快速的匹配方法,对很多的干扰因素不敏感,如光照和图像灰度发生变化,甚至支持局部边缘缺失杂乱场景,噪声,失焦,轻微变形

缺点:    不适用于旋转和缩放比较大的情况

基于描述符模板匹配:

原理:   基于特征点/关键点匹配

优点:      Halcon基于描述符的模板检测原理类似于SIFT算法。同样是提前关键点,模板与轮廓无关,它的模板不是根据边缘轮廓创建的,而是根据特征点创建的,例如:例如:点的位置或者相邻像素的灰度信息可以作为描述符。有纹理的平面图开非常适用于这种方法,尤其是对于旋转倾斜等场景中的匹配可以得到非常理想的结果。基于描述符的匹配允许一定程度的透边视形变,并且能在有标定无标定的图像天关行,这子船球任的匹现与物体的经院2与目标的致理您切相关,或说与目标的特征点相关的模板匹配只能用于有纹理的图像。

缺点:      创建基于描述符的模板这一步会比较耗时,所用的时间与纹理的复杂度有关

大家有兴趣关注我的B站(缺陷检测-老羊头)UID:3493081175296589 ,我会不定期录制一些课程,相互交流学习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值