LeetCode刷题系列 -- 97. 交错字符串

给定三个字符串 s1、s2、s3,请你帮忙验证 s3 是否是由 s1 和 s2 交错 组成的。

两个字符串 s 和 t 交错 的定义与过程如下,其中每个字符串都会被分割成若干 非空 子字符串:

s = s1 + s2 + ... + sn
t = t1 + t2 + ... + tm
|n - m| <= 1
交错 是 s1 + t1 + s2 + t2 + s3 + t3 + ... 或者 t1 + s1 + t2 + s2 + t3 + s3 + ...
注意:a + b 意味着字符串 a 和 b 连接。

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/interleaving-string
 

思路:

若是 s1.length + s2.length != s3.length 时,显然此刻大罗神仙也办不到 s1与 s2交错得到 s3,直接返回false
此题用动态规划
1. 定义二维数组 dp[s1.length+1][s2.length+1] , dp[i][j] 代表 s1[0,...,i-1] 与 s2[0,...,j-1]是否可以交错生成 s3[0,...,i+j-1]
2. 初始化base,dp[0][0] 代表两个空字符串是否可以交错成另一个空字符串,这个我们默认是可以的,故 dp[0][0] = true
2.
  若是  s1.length + s2.length == s3.length 时,
   2.1)若是 s1[i-1] != s3[i+j-1] && s2[j-1] != s3[i+j-1] ,则 dp[i][j] = false
   2.2) 若是 s1[i-1] == s3[i+j-1] , 此时说明,若是s1[0,...,i-2] 与 s2[0,...,j-1] 可以交错生成 s3[0,...,i+j-1],则表示 s1[0,...,i-1] 与 s2[0,...,j-1] 可以交错生成 s3[0,...,i+j-1], 即dp[i][j] = dp[i-1][j]
        若是 s2[j-1] == s3[i+j-1] , 此时说明,若是s1[0,...,i-1] 与 s2[0,...,j-2] 可以交错生成 s3[0,...,i+j-1],则表示 s1[0,...,i-1] 与 s2[0,...,j-1] 可以交错生成 s3[0,...,i+j-1], 即dp[i][j] = dp[i][j-1]

java代码:

class Solution {
       public boolean isInterleave(String s1, String s2, String s3) {
        boolean[][] dp = new boolean[s1.length() + 1][s2.length() + 1];

        if (s1.length() + s2.length() != s3.length()) {
            return false;
        }

        // 1. 初始化base
        dp[0][0] = true;

        for(int i=1;i<s1.length()+1;i++) {
            if(s1.charAt(i-1) == s3.charAt(i-1) && dp[i-1][0]) {
                dp[i][0] = true;
            }
        }
        for(int j=1;j<s2.length()+1;j++) {
            if(s2.charAt(j-1) == s3.charAt(j-1) && dp[0][j-1]) {
                dp[0][j] = true;
            }
        }

        // 2. 更新dp
        for (int i = 1; i < s1.length() + 1; i++) {
            for (int j = 1; j < s2.length() + 1; j++) {
                   if (s1.charAt(i - 1) == s3.charAt(i + j - 1)) {
                    dp[i][j] = dp[i - 1][j];
                } 
                if (s2.charAt(j - 1) == s3.charAt(i + j - 1)) {
                    dp[i][j] = dp[i][j - 1]||dp[i][j];
                }
            }
        }
        return dp[s1.length()][s2.length()];
    }
}

c++

class Solution {
public:
    bool isInterleave(string s1, string s2, string s3) {
        if(s3.size() != s1.size() + s2.size()) {
            return false;
        }


       // 定义状态数组 dp , dp[i][j] 表示 s1[0,...,i-1] 与 s2[0,...,j-1] 是否能交错成s3 [0,..., i + j -1]    
       vector<vector<int>> dp(s1.size()+1,vector<int>(s2.size()+1));

       // 初始化
       dp[0][0] = true;

       // 状态转移
       for(int i=0;i<s1.size()+1;i++) {
           for(int j=0;j<s2.size()+1;j++) {
               if(i>0) {
                   dp[i][j] |= (dp[i-1][j] && (s1[i-1] == s3[i+j-1]));
               }
               if(j>0) {
                   dp[i][j] |= (dp[i][j-1] && (s2[j-1] == s3[i+j-1]));
               }
           }
       }


       return dp[s1.size()][s2.size()]; 
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值