给定三个字符串 s1、s2、s3,请你帮忙验证 s3 是否是由 s1 和 s2 交错 组成的。
两个字符串 s 和 t 交错 的定义与过程如下,其中每个字符串都会被分割成若干 非空 子字符串:
s = s1 + s2 + ... + sn
t = t1 + t2 + ... + tm
|n - m| <= 1
交错 是 s1 + t1 + s2 + t2 + s3 + t3 + ... 或者 t1 + s1 + t2 + s2 + t3 + s3 + ...
注意:a + b 意味着字符串 a 和 b 连接。
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/interleaving-string
思路:
若是 s1.length + s2.length != s3.length 时,显然此刻大罗神仙也办不到 s1与 s2交错得到 s3,直接返回false 此题用动态规划 1. 定义二维数组 dp[s1.length+1][s2.length+1] , dp[i][j] 代表 s1[0,...,i-1] 与 s2[0,...,j-1]是否可以交错生成 s3[0,...,i+j-1] 2. 初始化base,dp[0][0] 代表两个空字符串是否可以交错成另一个空字符串,这个我们默认是可以的,故 dp[0][0] = true 2. 若是 s1.length + s2.length == s3.length 时, 2.1)若是 s1[i-1] != s3[i+j-1] && s2[j-1] != s3[i+j-1] ,则 dp[i][j] = false 2.2) 若是 s1[i-1] == s3[i+j-1] , 此时说明,若是s1[0,...,i-2] 与 s2[0,...,j-1] 可以交错生成 s3[0,...,i+j-1],则表示 s1[0,...,i-1] 与 s2[0,...,j-1] 可以交错生成 s3[0,...,i+j-1], 即dp[i][j] = dp[i-1][j] 若是 s2[j-1] == s3[i+j-1] , 此时说明,若是s1[0,...,i-1] 与 s2[0,...,j-2] 可以交错生成 s3[0,...,i+j-1],则表示 s1[0,...,i-1] 与 s2[0,...,j-1] 可以交错生成 s3[0,...,i+j-1], 即dp[i][j] = dp[i][j-1]
java代码:
class Solution {
public boolean isInterleave(String s1, String s2, String s3) {
boolean[][] dp = new boolean[s1.length() + 1][s2.length() + 1];
if (s1.length() + s2.length() != s3.length()) {
return false;
}
// 1. 初始化base
dp[0][0] = true;
for(int i=1;i<s1.length()+1;i++) {
if(s1.charAt(i-1) == s3.charAt(i-1) && dp[i-1][0]) {
dp[i][0] = true;
}
}
for(int j=1;j<s2.length()+1;j++) {
if(s2.charAt(j-1) == s3.charAt(j-1) && dp[0][j-1]) {
dp[0][j] = true;
}
}
// 2. 更新dp
for (int i = 1; i < s1.length() + 1; i++) {
for (int j = 1; j < s2.length() + 1; j++) {
if (s1.charAt(i - 1) == s3.charAt(i + j - 1)) {
dp[i][j] = dp[i - 1][j];
}
if (s2.charAt(j - 1) == s3.charAt(i + j - 1)) {
dp[i][j] = dp[i][j - 1]||dp[i][j];
}
}
}
return dp[s1.length()][s2.length()];
}
}
c++
class Solution {
public:
bool isInterleave(string s1, string s2, string s3) {
if(s3.size() != s1.size() + s2.size()) {
return false;
}
// 定义状态数组 dp , dp[i][j] 表示 s1[0,...,i-1] 与 s2[0,...,j-1] 是否能交错成s3 [0,..., i + j -1]
vector<vector<int>> dp(s1.size()+1,vector<int>(s2.size()+1));
// 初始化
dp[0][0] = true;
// 状态转移
for(int i=0;i<s1.size()+1;i++) {
for(int j=0;j<s2.size()+1;j++) {
if(i>0) {
dp[i][j] |= (dp[i-1][j] && (s1[i-1] == s3[i+j-1]));
}
if(j>0) {
dp[i][j] |= (dp[i][j-1] && (s2[j-1] == s3[i+j-1]));
}
}
}
return dp[s1.size()][s2.size()];
}
};