给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。
示例 1:
输入:nums = [1,1,2]
输出:
[[1,1,2],
[1,2,1],
[2,1,1]]
示例 2:
输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
提示:
1 <= nums.length <= 8
-10 <= nums[i] <= 10
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/permutations-ii
思路:回溯算法秒杀所有排列/组合/子集问题 :: labuladong的算法小抄
回溯算法 1. 数组排序 2. 定义数组 used ,长度为 nums.length , used[i] 代表 nums[i] 是否被放入子集中 3. 回溯算法遍历数组。注意剪枝问题:
java
class Solution {
public List<List<Integer>> permuteUnique(int[] nums) {
List<List<Integer>> result = new LinkedList<>();
boolean[] used = new boolean[nums.length];
Arrays.sort(nums);
backtrack(nums,used,new LinkedList<>(),result);
return result;
}
public void backtrack(int[] nums, boolean[] used, List<Integer> subSet, List<List<Integer>> result) {
if (subSet.size() == nums.length) {
result.add(new LinkedList<>(subSet));
return;
}
for (int i = 0; i < nums.length; i++) {
if(used[i]) {
continue;
}
// 剪枝, 目的 固定相同的元素在排列中的相对位置。 与前面的子集 II 的剪枝逻辑是一样的,相同的元素不需要再递归一次,不然就重复了
if (i > 0 && nums[i - 1] == nums[i] && !used[i-1]) {
continue;
}
used[i] = true;
subSet.add(nums[i]);
backtrack(nums, used, subSet, result);
used[i] = false;
subSet.remove(subSet.size() - 1);
}
}
}