1.单调栈法
维持一个单调递增栈,遍历数组中的元素,一旦发现num[i]>num[i-1],则进栈,否则弹出 栈顶元素,进行计算,一旦发现栈顶元素对应height小于num[i],则将i进栈。
最后到达数组末尾,对于所有栈内元素进行处理。所有栈内元素必定一个比一个小,而且还小于数组后面所有元素,所以可以用num[i]*(num.length-i)计算。
public int largestRectangleArea(int[] heights) {
Stack < Integer > stack = new Stack < > ();
stack.push(-1);
int maxarea = 0;
for (int i = 0; i < heights.length; ++i) {
while (stack.peek() != -1 && heights[stack.peek()] >= heights[i])
maxarea = Math.max(maxarea, heights[stack.pop()] * (i - stack.peek() - 1));
stack.push(i);
}
while (stack.peek() != -1)
maxarea = Math.max(maxarea, heights[stack.pop()] * (heights.length - stack.peek() -1));
return maxarea;
}
2.动态规划法
维持2个数组,left[]和right[]。 left[0]=-1,right[height.length-1]=height。遍历数组求得左边比其大小的一个元素,right[]同样方法。最后再遍历一遍数组求最大面积
public int largestRectangleArea(int[] heights) {
if(heights.length==0)
{
return 0;
}
int left[]=new int[heights.length];
int right[]=new int[heights.length];
left[0]=-1;
right[heights.length-1]=heights.length;
for(int i=1;i<heights.length;i++)
{
int point=i-1;
while (point>=0&&heights[point]>=heights[i])
{
point=left[point];
}
left[i]=point;
}
for(int i=heights.length-2;i>=0;i--)
{
int point=i+1;
while (point<heights.length&&heights[point]>=heights[i])
{
point=right[point];
}
right[i]=point;
}
int max=0;
for(int i=0;i<heights.length;i++)
{
max=Math.max(max,(right[i]-left[i]-1)*heights[i]);
}
return max;
}