简介
提到爬虫,大部分人都会想到使用Scrapy工具,但是仅仅停留在会使用的阶段。为了增加对爬虫机制的理解,我们可以手动实现多线程的爬虫过程,同时,引入IP代理池进行基本的反爬操作。
本次使用天天基金网进行爬虫,该网站具有反爬机制,同时数量足够大,多线程效果较为明显。
技术路线
- IP代理池
- 多线程
- 爬虫与反爬
编写思路
-
首先,开始分析天天基金网的一些数据。经过抓包分析,可知:
./fundcode_search.js包含所有基金的数据,同时,该地址具有反爬机制,多次访问将会失败的情况。 -
同时,经过分析可知某只基金的相关信息地址为:fundgz.1234567.com.cn/js/ + 基金代码 + .js
-
分析完天天基金网的数据后,搭建IP代理池,用于反爬作用。点击这里搭建代理池,由于该作者提供了一个例子,所以本代码里面直接使用的是作者提供的接口。如果你需要更快速的获取到普匿IP,则可以自行搭建一个本地IP代理池。
# 返回一个可用代理,格式为ip:端口
# 该接口直接调用github代理池项目给的例子,故不保证该接口实时可用
# 建议自己搭建一个本地代理池,这样获取代理的速度更快
# 代理池搭建github地址https://github.com/1again/ProxyPool
# 搭建完毕后,把下方的proxy.1again.cc改成你的your_server_ip,本地搭建的话可以写成127.0.0.1或者localhost
def get_proxy():
data_json = requests.get("http://proxy.1again.cc:35050/api/v1/proxy/?type=2").text
data = json.loads(data_json)
return data['data']['proxy']
- 搭建完IP代理池后,我们开始着手多线程爬取数据的工作。一旦使用多线程,则需要考虑到数据的读写顺序问题。这里使用python中的队列queue进行存储基金代码,不同线程分别从这个queue中获取基金代码,并访问指定基金的数据。由于queue的读取和写入是阻塞的,所以可以确保该过程不会出现读取重复和读取丢失基金代码的情况。
# 将所有基金代码放入先进先出FIFO队列中
# 队列的写入和读取都是阻塞的,故在多线程情况下不会乱
# 在不使用框架的前提下,引入多线程,提高爬取效率
# 创建一个队列
fund_code_queue = queue.Queue(len(fund_code_list)