来自台湾国立清华大学的Elvis Saravia等研究人员提出了一种基于图论(graph-based)的机制来提取丰富情感(rich-emotion)的相关模式(pattern),用来加强对语料库的线上情感表达进行深入分析。论文实验结果表明,所提出的情感分析框架DeepEmo比目前大多数的情感分析框架的F1-score都要高(仅次于Volvoka(2016)),而且其提出的富集模式(enriched patterns)也被证实了具有很高的领域适用性。
首先我们先通过思维导图来简要了解下这篇DeepEmo论文的整体结构:
WHAT
情感分析框架DeepEmo是什么?

DeepEmo论文提出了三种方法论,分别是:
(1) 基于图论的基本模式提取方法;
(2) 利用词嵌入的基本模式丰富方法-富集模式(enriched patterns);
(3) 对tf-idf(词频-逆文件频率)进行修改的pf- ief(模式频率 - 逆情感频率)评分机制;