数据矿工学习-样本自适应的在线卷积稀疏编码论文简析

本文介绍了ICML 2018入选论文——在线卷积稀疏编码(SCSC),它使用样本自适应字典进行图像处理,尤其适合大规模或高维数据。相比传统CSC,SCSC在小样本、大数据集和高维数据集上有显著优势,且在图像去噪和修复方面表现出色。未来研究将尝试将SCSC应用于卷积神经网络,以增强迁移学习能力并降低计算需求。
摘要由CSDN通过智能技术生成

在瑞典斯德哥尔摩国际会展中心举行的国际机器学习大会(ICML)正在受到全世界科技界的关注。来自国内人工智能企业队代表第四范式的姚权铭与来自香港科技大学的研究者提出的“Online Convolutional Sparse Coding with Sample-Dependent Dictionary:样本自适应的在线卷积稀疏编码”,入选了ICML 2018中选论文榜单。

首先我们先通过思维导图来简要了解下这篇SCSC论文的整体结构:

WHAT

SCSC是什么?

卷积稀疏编码(CSC已被广泛用于图像和信号处理中的平移不变字典(sample-dependent dictionary)的学习。不同于传统的CSC算法使用由所有样本共享的字典来卷积,此篇论文中的SCSC使用的是样本自适应的字典,其中每个过滤器是从数据中学习的一组基本滤波器线性组合。这种增加的灵活性允许捕获大量依赖于样本的模式,这在处理大型高维数据集时特别有用。在计算上,所得到的模型可以通过在线学习有效地学习。在大量的数据集上的实验结果表明,所提出的方法优于现有的CSC算法,具有显著减少的时间空间复杂度

 

WHY

SCSC的优势在哪里?

与目前的最新的CSC进行对比,SCSC的优势主要体现在三个方面:

1、数据集的大小

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值