Description
聪明的兔子定义了三个函数:
• g(x) 表示将x 十进制表示中各位数字从高位到低位降序排列组成的数字。
• l(x) 表示将x 十进制表示中各位数字从高位到低位升序排列组成的数字。
• f(x) = g(x) - l(x)
如果一个数x 与f(x) 相等,兔子们称它为幸运数。现在兔子们希望计算在所有的n 位数字中,所有幸运数的平方的和。结果对p 取模后输出,注意这里数字可以包含前导0.
Input
一行两个整数n 和p
Output
一行一个整数,表示所求的结果
Sample Input
4 10000
Sample Output
8276
Data Constraint
• 对于20% 的测试数据,1 <= n<= 10
• 对于100% 的测试数据,1 <= n <= 30, 1<= p<= 2* 10^9 (Standard IO
Solution
这一题n比较小可以考虑用搜索
发现这样一减之后(不考虑进位的话)串是回文的
那么就只需要搜索十五位
由于数位要满足从高到低单调不增
所以是跑的过去的
Code
#include <cstdio>
#include <cstring>
#include <algorithm>
#define fo(i,a,b) for(i=a;i<=b;i++)
#define fd(i,a,b) for(i=a;i>=b;i--)
using namespace std;
typedef long long ll;
int n,p[35],a[35],b[35]; ll ans,mo;
bool cmp(int x,int y){ return x>y;}
ll sqr(ll x) { return x*x%mo;}
inline void dfs(int x,int y){
int fl,i;
if (x<=(n+1)/2){
for(i=y;i+1;i--){
p[x]=i;
dfs(x+1,i);}
} else {
for(i=1;i<n-i+1;i++) p[n-i+1]=-p[i];
fd(i,n,1) if (p[i]<0) p[i]+=10,p[i-1]--;
fl=0;
fo(i,1,n) a[i]=b[i]=p[i];
sort(a+1,a+n+1); sort(b+1,b+n+1,cmp);
fd(i,n,1) {
b[i]-=a[i];
if (b[i]<0) b[i]+=10,b[i-1]--;
if (b[i]!=p[i]){
fl=1;
break;}
}
if (!fl) {
ll v=0;
fo(i,1,n)
v=(v*10+b[i])%mo;
ans=(ans+sqr(v))%mo;
}
}
}
int main(){
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
scanf("%d%lld",&n,&mo);
dfs(1,9);
printf("%lld\n",ans);
}