题目链接:Balala Power!
题目大意:给出的字符串,每个字符建立一种与0-25的对应关系。然后每个字符串看成是一个26进制的数。问能获得的数的总和的最大值。(最后对1e9+7取模)。
题解:每个字符对答案的贡献都可以看作一个 26 进制的数字,问题相当于要给这些贡献加一个 0 到 25 的权重使得答案最大。
做法:按字典序排序过后,贪心。
坑点:除了单独‘0’外,每个数字串不能有前导0;题目保证输入数据至少有一个字符不会出现在任何字符串的开头。(因此,当不得不把某个字符置为0的情况需处理,请看代码)
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<vector>
#include<map>
#include<queue>
#include<stack>
typedef long long ll;
using namespace std;
const int maxn = 1e5 + 10;
const ll MOD = 1e9 + 7;
int num[26][maxn];
int ban[26];
char str[maxn];
ll power[maxn];
ll sum[maxn];
int a[26];
int n;
int maxL;
void init(){
memset(ban,0,sizeof(ban));
memset(num,0,sizeof(num));
memset(sum,0,sizeof(sum));
maxL = 0;
}
bool cmp(const int a,const int b){
for(int i = maxL - 1; i >= 0; i--){
if(num[a][i] != num[b][i]){
return num[a][i] < num[b][i];
}
}
return 0;
}
void solve(){
init();
for(int i = 0; i < n; i++){
cin >> str;
int len = strlen(str);
if(len > 1) ban[str[0] - 'a'] = 1;
reverse(str,str+len);
for(int j = 0 ; j < len; j++){
num[str[j] - 'a'][j]++;
sum[str[j] - 'a'] += power[j];
if(sum[str[j] - 'a'] > MOD){
sum[str[j] - 'a'] %= MOD;
}
}
maxL = max(maxL,len);
}
for(int i = 0; i < 26; i++){
for(int j = 0; j < maxL; j++){
num[i][j+1] += num[i][j] / 26;
num[i][j] %= 26;
}
while(num[i][maxL]){
num[i][maxL+1] += num[i][maxL] / 26;
num[i][maxL] %= 26;
maxL++;
}
a[i] = i;
}
sort(a,a+26,cmp);
int zero = -1;
for(int i = 0; i < 26 ; i++){
if(!ban[a[i]]){
zero = a[i];
break;
}
}//当不得不把某个字符置为0的时候,找到一个最优解:即能使某字符为0的最优策略,当然是选择字典序尽量小的了。
ll ans = 0; int weight = 25;
for(int i = 25; i >= 0 ; i--){
if(a[i] != zero){
ans += (ll)(weight--) * sum[a[i]] % MOD;
ans %= MOD;
}
}
static int cas = 1;
printf("Case #%d: %lld\n",cas++,ans);
}
int main(){
ios::sync_with_stdio(false);
power[0] = 1;
for(int i = 1; i < maxn; i++){
power[i] = (power[i-1] * 26) % MOD;
}
while(cin >> n){
solve();
}
return 0;
}