51nod 1352 集合计数(扩展欧几里德)

1352 集合计数

给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数。

提示:

对于第二组测试数据,集合分别是:{1,10},{2,9},{3,8},{4,7},{5,6},{6,5},{7,4},{8,3},{9,2},{10,1}.满足条件的是第2个和第8个。


Input
第1行:1个整数T(1<=T<=50000),表示有多少组测试数据。
第2 - T+1行:每行三个整数N,A,B(1<=N,A,B<=2147483647)
Output
对于每组测试数据输出一个数表示满足条件的集合的数量,占一行。
Input示例
2
5 2 4
10 2 3
Output示例
1
2


这题wa了N+1发

从大神学习:http://blog.csdn.net/u010885899/article/details/46761757

#include <iostream>
#include <vector>
#include <algorithm>
#include<stdio.h>
using namespace std;


//扩展欧几里德 
//求解方程ax+by=gcd(a,b)  d=gcd(a,b) 
void ex_gcd(long long a,long long b,long long &d,long long &x,long long &y)
{//gcd(a,0)=1*a+0*0  递归出口 
	if(b==0)
	{
		d=a;
		x=1;
		y=0;
	}
	else
	{
		ex_gcd(b,a%b,d,y,x);
		y=y-x*(a/b);//先记住 
	}
}

long long slove()
{
	//求ax+by=n+1有多少组整数解
	long long x,y,a,b,n,d;
	cin>>n>>a>>b;
	//求解方程ax+by=gcd(a,b)  d=gcd(a,b) 
	ex_gcd(a,b,d,x,y);
	long long z=a*b/d;   //最小公倍数 
	//n+1必须是gcd(a,b)的倍数 
	if((n+1)%d)
	  return 0;
	x=x*((n+1)/d); //求解 ax+by=n+1  x 
	long long r=b/d;
	x=(x%r+r)%r;//求解最小的x
	if(x==0)  x=r;	
	long long remain=n-x*a;
	long long ans=0;
	if(remain<0)
	     return 0;
	else
	{
	   ans=1;            //最小x解
	                      //remain/Lcm(a,b)就是看看有多少个 ab倍数 
	   ans=ans+remain/z;
	}
	return ans;
}
int main()
{
   int t;
   ios::sync_with_stdio(false);
   cin>>t;
   while(t--)
   {
   	  long long ans=slove();
   	  cout<<ans<<endl;
   }	
   return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值