题目描述
棋盘上A点有一个过河卒,需要走到目标B点。卒行走的规则:可以向下、或者向右。同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。
棋盘用坐标表示,A点(0, 0)、B点(n, m)(n, m为不超过20的整数),同样马的位置坐标是需要给出的。
现在要求你计算出卒从A点能够到达B点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。
输入输出格式
输入格式:
一行四个数据,分别表示B点坐标和马的坐标。
输出格式:
一个数据,表示所有的路径条数。
输入输出样例
输入样例#1:
6 6 3 3
输出样例#1:
6
说明
结果可能很大!
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner rd = new Scanner(System.in);
int Const[][]={{0,-2,-1,1,2,2,1,-1,-2},{0,1,2,2,1,-1,-2,-2,-1}};
long DP[][]=new long[21][21];
DP[0][0]=1;
int mark[][]=new int[21][21];
int nx=0,ny=0,hx=0,hy=0;
nx=rd.nextInt();
ny=rd.nextInt();
hx=rd.nextInt();
hy=rd.nextInt();
for(int i=0;i<9;++i)
if(hx+Const[0][i]>=0&&hx+Const[0][i]<=nx&&hy+Const[1][i]>=0&&hy+Const[1][i]<=ny)
mark[hx+Const[0][i]][hy+Const[1][i]]=1;
for(int i=0;i<=nx;++i)
for(int j=0;j<=ny;++j) {
if(i!=0) //非左边界
DP[i][j]+=DP[i-1][j];
if(j!=0) //非上边界
DP[i][j]+=DP[i][j-1];
if(mark[i][j]==0)
DP[i][j]*=1;
else //被马拦截到,路径条数置零
DP[i][j]*=0;
}
System.out.println(DP[nx][ny]);
}
}
解释:首先对马所在的点和所有跳跃一步可达的点全部置mark[][]=1;由于卒行走的规则:可以向下、或者向右,设DP i,j为卒从起点走到(i,j) 点所有可行的路径总数,置初始位置(A点 DP[0][0])的值为1,表示初始为(0,0)位置初始路径的条数为1,(通过卒行走的规则可以得出状态转移方程)数组左边界方格的值为其上方方格的值,数组上边界方格的值为其左边方格的值,数组中其余方格的值为其上方方格和左边方格的值相加,当mark[i][j]==1时,使DP[i][j]=0;最终得到达B点,得到A到达B点的路径条数。
注意:结果可能很大!需使用long类型