动态规划 过河卒

题目描述

棋盘上A点有一个过河卒,需要走到目标B点。卒行走的规则:可以向下、或者向右。同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为马拦过河卒

棋盘用坐标表示,A(0, 0)B(n, m)(n, m为不超过20的整数),同样马的位置坐标是需要给出的。

现在要求你计算出卒从A点能够到达B点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。

输入输出格式

输入格式:

一行四个数据,分别表示B点坐标和马的坐标。

输出格式:

一个数据,表示所有的路径条数。

输入输出样例

输入样例#1 

6 6 3 3

输出样例#1 

6

说明

结果可能很大!

import java.util.Scanner;

public class Main {

	public static void main(String[] args) {
		Scanner rd = new Scanner(System.in);
		int Const[][]={{0,-2,-1,1,2,2,1,-1,-2},{0,1,2,2,1,-1,-2,-2,-1}};
		long DP[][]=new long[21][21];
		DP[0][0]=1;
		int mark[][]=new int[21][21];
		int nx=0,ny=0,hx=0,hy=0;
		nx=rd.nextInt();
		ny=rd.nextInt();
		hx=rd.nextInt();
		hy=rd.nextInt();
	    for(int i=0;i<9;++i)
	        if(hx+Const[0][i]>=0&&hx+Const[0][i]<=nx&&hy+Const[1][i]>=0&&hy+Const[1][i]<=ny)
	            mark[hx+Const[0][i]][hy+Const[1][i]]=1;
		    for(int i=0;i<=nx;++i)
		        for(int j=0;j<=ny;++j) {
		            if(i!=0)               //非左边界
		                DP[i][j]+=DP[i-1][j];
		            if(j!=0)              //非上边界
		                DP[i][j]+=DP[i][j-1];
		            if(mark[i][j]==0)
		            	DP[i][j]*=1;
		            else                  //被马拦截到,路径条数置零
		            	DP[i][j]*=0;
		        }
		    System.out.println(DP[nx][ny]);
	}
}

解释:首先对马所在的点和所有跳跃一步可达的点全部置mark[][]=1;由于卒行走的规则:可以向下、或者向右,设DP i,j为卒从起点走到(i,j) 点所有可行的路径总数,置初始位置(A点 DP[0][0]的值为1,表示初始为(0,0)位置初始路径的条数为1,(通过卒行走的规则可以得出状态转移方程)数组左边界方格的值为其上方方格的值,数组上边界方格的值为其左边方格的值,数组中其余方格的值为其上方方格和左边方格的值相加,当mark[i][j]==1时,使DP[i][j]=0;最终得到达B点,得到A到达B点的路径条数。

注意:结果可能很大!需使用long类型



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值