图的存储方式

(Graph)G由两个集合V和E组成,记为G=(V,E),其中V是顶点的有穷非空集合E是V中顶点偶对的有穷集合(即就是边集)。(图中的边集允许为空)

有向图:顶点对<x,y>是有序的,他表示从顶点x到顶点y的一条有向边,<x,y>与<y,x>表示两条不同的有向边。

无向图:顶点对(x,y)是无序的,它表示与顶点x和顶点y相关联的一条边,(x,y)和(y,x)是同一条边。

子图:假设有两个图G=(V,E)和G1=(V1,E1),如果V1⊆V且E1⊆E,称G1是G的子图。

有向完全图:对于有向图,任意两个顶点之间都存在方向相反的两条边,即具有n(n-1)条边。

对于无向图:任意两个顶点之间都存在边,即具有n(n-1)/2条边。

简单图:不存在自环(顶点到其自身的边)和重边(完全相同的边)的图。

稀疏图:有很少条边或弧的图称为稀疏图,反之称为稠密图

权:从图中一个顶点到另一个顶点的距离或耗费。

网:带有权重的图。

邻接点:无向图G,相邻的两个顶点

度:与顶点相关联的边的数目。

出度:出度表示顶点为起点的边的数目。

入度:入度表示顶点为终点的边的数目。

路径:顶点V顶点V1的路劲是一个顶点序列。

路径长度:是一条路径上经过的边和弧的数目。

回路或环:第一个顶点和最后一个顶点相同的路径称为回路或环。

简单路径:顶点中不重复出现的路径。

简单回路:除了第一个顶点和最后一个顶点之外,其余顶点不重复出现的回路。

连通图:图中任意两个顶点都是连通的。

极大连通子图:包含尽可能多的顶点,即找不到另外一个顶点,使得此顶点能够连接到此极大连通子图中的任意一个顶点。

连通分量:极大连通子图的数量。

强连通图:在有向图中,对于它任意两个顶点,从V1到V2和从V2到V1都存在路径。

强连通分量:有向图中的极大连通子图。

连通图的生成树:包含图中的全部顶点你,但只有足以构成一棵树的n-1条边。

最小生成树:生成树的边的权重之和是最小的树。

邻接矩阵:

邻接表:

图的Java实现:

(1)边的构建

public class Edge {
	//权重
	public int weight;
	//从哪个节点出发
	public Node from;
	//到那个节点
	public Node to;
	//构造方法
	public Edge(int weight, Node from, Node to) {
		this.weight = weight;
		this.from = from;
		this.to = to;
	}
}

(2)节点的构建

import java.util.ArrayList;

public class Node {
	//标记定点,也可以是string类型
	public int value;
	//入度
	public int in;
	//出度
	public int out;
	//从本身出发,能够到达的下一个节点
	public ArrayList<Node> nexts;
	//从本身出发,发散出边的集合
	public ArrayList<Edge> edges;
	public Node(int value) {
		super();
		this.value = value;
		this.in = 0;
		this.out = 0;
		this.nexts = new ArrayList<>();
		this.edges = new ArrayList<>();
	}
}

(3)图的构建

import java.util.HashMap;
import java.util.HashSet;

public class Graph {
	//点的集合
	public HashMap<Integer, Node> nodes;
	//边的集合
	public HashSet<Edge> edges;
	public Graph() {
		nodes = new HashMap<>();
		edges = new HashSet<>();
	}
}

(4)生成图

//生成图
public class GraphGenerator {
	public static Graph createGraph(Integer[][] matrix){
		//创建一个图
		Graph graph=new Graph();
		for (int i = 0; i < matrix.length; i++) {
			//首先获取边的起点、终点和权值
			Integer from = matrix[i][0];
			Integer to = matrix[i][0];
			Integer weight = matrix[i][0];
			//如果起点不在图的顶点集中,就创建起点节点
			if (!graph.nodes.containsKey(from)) {
				graph.nodes.put(from, new Node(from));
			}
			//如果终点不在图的顶点集中,就创建终点节点
			if (!graph.nodes.containsKey(to)) {
				graph.nodes.put(to, new Node(to));
			}
			//从节点集中获取起点节点和终点节点
			Node fromNode=graph.nodes.get(from);
			Node toNode = graph.nodes.get(to);
			//利用权值、起点节点和终点节点构建有向边
			Edge newedge = new Edge(weight, fromNode, toNode);
			//nexts是从本身出发,能够到达的下一个节点的集合,所以把终点加入
			fromNode.nexts.add(toNode);
			fromNode.out++;
			toNode.in++;
			//edges是从本身出发,发散出边的集合,把边加入起点节点
			fromNode.edges.add(newedge);
			//把边加入图的边集
			graph.edges.add(newedge);
		}
		return graph;
	}
}

matrix传入的是一个二维数组:包括起点、终点和权值


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值