扩展欧几里得算法 POJ 1061

根据此题 整理下 扩展欧几里得

扩展欧几里得是用来判断并求 ax + by = c 是否有解及其解的数学算法

首先列出定理

 1、ax + by = gcd(a,b)

 2、gcd(a,b) = gcd(b, a%b);

 

 本题 题意是 判断两个同向的青蛙 在初始位置(x,y),速度不同(m,n)的情况下能否在一个球形路线(周长为L)下相遇

 也就是可以列出等式   

    (x + m*t)%L = (y + n*t)%L;

==>     (x + m*t)%L -(y + n*t)%L =0

==>     (x + m*t) -(y + n*t)  + k*L =0

==>     (m - n )*t  + k*L = y-x

        a   *   x  + b*y = c;

判断是否有解以及解;

如果C对gcd(a,b)取余不是0那么就说明无论怎么走 都不会相遇 

如果是0

说明有解 带入扩展欧几里得算法求解

我们对 ax + by = c 化简 根据定理2

ax + by = gcd (a,b) = gcd (b,a%b)  =  bx +(a%b) *y = c  = ...

当化简到最后也就是 b = 0时候 原式可以表示成 a*x + 0*y = gcd(a,0) = a

此时也就是说 ==> x=1,y = 0; 

求得一个关于a*x +0*y =  gcd(a,0) = a的解

ax' + by'  

     =  bx + (a%b) *y

     = bx + (a - a/b*b ) *y

                     = bx + ay- a/b*by

                     = ay + b(x-a/b*y)

也就是说 当前ab下的解

通过下一层递归的x和y求出

x' = y

y' = (x-a/b*y)

于是可以写出扩展欧几里得算法

当递归回溯回来的时候 我们就得到了 ax' + by' = gcd(a,b)的解  

 

ll egcd(ll a,ll b,ll &x,ll &y)
{
    if(b==0) 
    {
        x = 1,y = 0;
        return a;
    }
    ll ans = egcd(b,a%b,x,y);
    ll t = x;
    x = y;
    y = t-a/b*y;
    return ans;
}


可是问题还没解决 我们要求的是等于C的解我们现在得到了gcdab的一组解,这就需要我们进一步转化答案 

 

设t = C/gcd(a,b)

可以将 ax + by  = c =   a * t *x + b * t *y = gcd(a,b) *t  

也就是 我们得到的解 的X值 也就是时间值 再乘以 t 就是对应C 下的x解

然后得到解后有可能解是负数 那么需要我们进一步找通解

通解公式

x = x0 + k * ( b / gcd(a,b) )

y = y0 + k * ( a / gcd(a,b) )

最终可以获得最小正整数解

例题  POJ 1061

code:

#include <iostream>
#include <iomanip>
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <functional>
#include <vector>
#include <cmath>
#include <string>
#include <stack>
#include <queue>
using namespace std;
typedef long long ll;
ll egcd(ll a,ll b,ll &x,ll &y)
{
    if(b==0)
    {
        x = 1,y = 0;
        return a;
    }
    ll ans = egcd(b,a%b,x,y);
    ll t = x;
    x = y;
    y = t-a/b*y;
    return ans;
}
int main()
{
    ll x,y,m,n,L;
    cin>>x>>y>>m>>n>>L;
    ll a,b,c;
    a = m-n;
    b = L;
    c = y-x;
    if(a<0)
    {
        a = -a;
        c = -c;
    }
    ll gcd = egcd(a,b,x,y);

    cout<<egcd(x,y,a,b)<<endl;
    if(c%gcd!=0)puts("Impossible");
    else
    {
        x = x*c/gcd;
        ll t = b/gcd;
        if(x>=0)
            x %=t;
        else
            x = x%t+t;
    }

    return 0;
}

 

 

 

 

==>     (x + m*t)%L -(y + n*t)%L =0

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值