【计算机基础】期末考试必考,学会就能提高 40 分

本文详细介绍了二进制与十进制之间的转换过程,包括整数和小数部分的转换方法,以及通过例题展示了如何将1101转为13和0.1011转为0.6875。这对于理解计算机科学基础和数字系统设计至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二进制与十进制相互转换的详细过程及例题解析

二进制和十进制是两种常用的数制系统。二进制系统仅使用0和1两个数字,而十进制系统则使用0到9的十个数字。在计算机科学和数字电路设计等领域,经常需要在这两种数制之间进行转换。本文将详细介绍二进制与十进制之间的转换方法,并提供相关的例题及答案。

二进制转十进制

整数部分

对于二进制整数的转换,我们可以使用以下公式:

十进制数 = Σ(二进制数的每一位 × 2^(位数 - 1 - 当前位的位置))

例子1:将二进制数 1101 转换为十进制数。

1 × 2^3 + 1 × 2^2 + 0 × 2^1 + 1 × 2^0
= 8 + 4 + 0 + 1
= 13

所以,二进制数 1101 等于十进制数 13
在这里插入图片描述

小数部分

对于二进制小数的转换,我们可以使用类似的方法,但是幂次变为负数,并且从右向左依次减少:

十进制小数 = Σ(二进制数的每一位 × 2^(-位数 + 1 + 当前位的位置))

例子2:将二进制小数 0.1011 转换为十进制小数。

1 × 2^(-1) + 0 × 2^(-2) + 1 × 2^(-3) + 1 × 2^(-4)
= 0.5 + 0 + 0.125 + 0.0625
= 0.5 + 0.125 + 0.0625
= 0.6875

所以,二进制小数 0.1011 等于十进制小数 0.6875

十进制转二进制

整数部分

将十进制整数转换为二进制,通常使用除以2并取余数的方法,直到商为0为止。

步骤

  1. 将十进制数除以2。
  2. 记录余数。
  3. 用商继续除以2。
  4. 重复步骤2和3,直到商为0。
  5. 将所有余数倒序排列,得到二进制数。

例子3:将十进制数 13 转换为二进制数。

13 / 2 = 6 ... 余数 1
6 / 2 = 3 ... 余数 0
3 / 2 = 1 ... 余数 1
1 / 2 = 0 ... 余数 1

将余数倒序排列:1101

所以,十进制数 13 等于二进制数 1101

小数部分

十进制小数转换为二进制小数较为复杂,通常需要使用乘以2并取整数部分的方法,直到小数部分为0或达到所需的精度。

步骤

  1. 将十进制小数乘以2。
  2. 取乘积的整数部分作为二进制小数的下一位。
  3. 记录整数部分,并将小数部分继续乘以2。
  4. 重复步骤2和3,直到小数部分为0或达到所需的精度。

例子4:将十进制小数 0.6875 转换为二进制小数。

0.6875 × 2 = 1.375 ... 整数部分 1
0.375 × 2 = 0.75 ... 整数部分 0
0.75 × 2 = 1.5 ... 整数部分 1
0.5 × 2 = 1 ... 整数部分 1

将整数部分倒序排列:1011

所以,十进制小数 0.6875 近似等于二进制小数 0.1011(实际上,由于二进制小数的表示范围有限,这个转换是一个近似值)。

总结

二进制与十进制之间的转换是计算机科学中的基础知识。整数部分的转换相对简单,而小数部分的转换则需要更多的计算和近似。掌握这些转换方法对于理解和设计数字系统至关重要。通过练习相关的例题,可以加深对这些概念的理解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值