基于Python的电商用户行为分析与个性化推荐系统(毕业设计)

基于Python的电商用户行为分析与个性化推荐系统(毕业设计)

在这里插入图片描述

1. 选题背景与意义

随着电子商务的快速发展,某电商平台积累了海量用户行为数据。本项目旨在通过数据分析技术挖掘用户行为模式,构建个性化推荐系统,提高平台转化率和用户满意度。研究具有以下价值:

  • 实践完整的数据分析流程
  • 应用机器学习算法解决实际问题
  • 探索推荐系统在电商领域的应用

2. 数据集说明

使用Kaggle公开数据集(包含10万条用户行为记录):

import pandas as pd
data = pd.read_csv('ecommerce_behavior.csv')
print(data.info())

# 数据字段:
# user_id, item_id, category_id, behavior_type, timestamp
# 其中behavior_type包含:pv(浏览)、cart(加购)、fav(收藏)、buy(购买)

3. 数据分析流程设计

3.1 技术路线图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值