基于Python的电商用户行为分析与个性化推荐系统(毕业设计)
1. 选题背景与意义
随着电子商务的快速发展,某电商平台积累了海量用户行为数据。本项目旨在通过数据分析技术挖掘用户行为模式,构建个性化推荐系统,提高平台转化率和用户满意度。研究具有以下价值:
- 实践完整的数据分析流程
- 应用机器学习算法解决实际问题
- 探索推荐系统在电商领域的应用
2. 数据集说明
使用Kaggle公开数据集(包含10万条用户行为记录):
import pandas as pd
data = pd.read_csv('ecommerce_behavior.csv')
print(data.info())
# 数据字段:
# user_id, item_id, category_id, behavior_type, timestamp
# 其中behavior_type包含:pv(浏览)、cart(加购)、fav(收藏)、buy(购买)