Description
一个旅行者有一个最多能装m公斤的背包,现有n件物品,它们的重量分别是w1,w2,w3,...,wn,它们的价值分别为c1,c2,c3,...,cn。若每种物品只有一件,求旅行者能获得的最大总价值。
Input
m,和n(m<=200, n<=30)
接下来共n行每行两个整数wi,ci
Output
最大总价值
Sample Input
10 4
2 1
3 3
4 5
7 9
Sample Output
12
代码区:
#include <iostream>
#include <string.h>
#include <cmath>
using namespace std;
int main()
{
int m,n;
cin>>m>>n;//输入容量为m,数量为n
int a[n],b[n];//a为重量,b为价值
int dp[40][250];//定义dp[i][j]为前i个物品,背包容量在j的最优解
memset(a,0,sizeof(a));//初始化
memset(b,0,sizeof(b));//初始化
memset(dp,0,sizeof(dp));//初始化
for(int i=1;i<=n;i++)
{
cin>>a[i]>>b[i];//输入每件物品的重量和价值
}
for(int i=1;i<=n;i++)
{
for(int j=0;j<=m;j++)
{
dp[i][j]=dp[i-1][j];//当j<a[i]时,容量不够不取第i个
if(j>=a[i])//当容量足够时进行判断
dp[i][j]=max(dp[i][j],dp[i-1][j-a[i]]+b[i]);//前者为不取,后者为取该物品
//新dp等于前i-1个物品剩余容量为j-a[i]加上刚取到的物品价值
}
}
int ans=0;
for(int j=0;j<=m;j++)//查询每个容量的值,找出最大的值
ans=max(ans,dp[n][j]);
cout << ans << endl;
return 0;
}
新手上路,有错请指正