遥感影像公开数据集:DeepGlobe Road 数据集

188 篇文章 ¥119.90 ¥299.90
188 篇文章 ¥119.90 ¥299.90
188 篇文章 ¥119.90 ¥299.90
本文介绍了DeepGlobe Road数据集,一个用于道路提取的遥感影像数据集,包含高分辨率卫星图像和道路标注。数据集覆盖6个国家,提供训练、验证和测试集,总计20,000张图片。文章详细阐述了数据集的下载、预处理、构建数据加载器以及使用PyTorch进行模型训练的过程。" 77009029,5717464,CentOS7安装VMware Tools详细步骤及解决常见问题,"['虚拟机', 'Linux', 'CentOS', 'VMware']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

遥感影像公开数据集:DeepGlobe Road 数据集

深度学习技术在遥感图像处理领域的应用日益广泛,其中包括了许多相关的数据集。本文将介绍一个广泛应用于道路提取的遥感影像数据集——DeepGlobe Road 数据集,并提供相关的代码实现。

一、 DeepGlobe Road 数据集简介

DeepGlobe Road 数据集是一个通过卫星遥感影像获取的道路分割数据集。其由高分辨率的卫星图像以及在图像上标注的道路轮廓线组成。这个数据集的任务主要是从卫星图像中提取出现有道路的准确轮廓。对于人工智能与计算机视觉领域的科研人员来说,这个数据集是非常有价值的,因为其采用的数据来源于真实的遥感图像,并且拥有高质量的标注。

DeepGlobe Road 数据集中包含了来自 6 个国家的遥感影像,使用像元尺寸为 0.3 米和 0.05 米的两种分辨率进行了测试。该数据集中包含了训练集、验证集和测试集三部分,总共有 20,000 张图片。

二、 数据集下载

DeepGlobe Road 数据集可以从官方网站上进行下载。(注意:第一次下载可能需要注册账号)

https://competitions.codalab.org/competitions/18467#participate-get-data

三、 数据集使用

  1. 数据集预处理

在开始处理数据前,需要进行一些必要的预处理操作。主要包括数据集的读取、图像预处理和标签预处理。

### 遥感图像中桥梁语义分割的数据集 对于遥感图像中的桥梁语义分割,存在一些特定的数据集可以用于研究和开发工作。这些数据集通常包含了标注好的高分辨率卫星或航空影像,其中桥梁被精确地标记出来。 #### 常见的遥感图像桥梁语义分割数据集 1. **Massachusetts Roads and Buildings Dataset** 这一数据集由马萨诸塞州的道路和建筑物组成,虽然主要关注道路和建筑,但也包含了一定量的桥梁实例。该数据集中提供了详细的像素级标签,适合用来训练和评估桥梁识别算法[^1]。 2. **SpaceNet VSL Data Challenge** SpaceNet 提供了一系列挑战赛使用的公开数据集,其中包括带有桥梁标记的城市区域航拍图。此数据集不仅有丰富的地理多样性,而且其高质量的标注使得它成为测试复杂环境下桥梁检测的理想选择[^2]。 3. **ISPRS Potsdam 2D Semantic Labeling Contest** ISPRS 波茨坦二维语义标注竞赛提供了一个多光谱城市地区图像集合,包括五个不同类别的地面实况信息——汽车、树木、建筑物、低植被以及人造物体(如桥)。这个数据集非常适合于探索如何区分不同类型的人造结构体之间的差异[^3]. 4. **DeepGlobe Road Extraction Dataset** DeepGlobe 是另一个重要的资源库,专注于全球范围内的基础设施提取任务。尽管重点在于公路网络,但部分子集也涵盖了跨越河流或其他障碍物上的桥梁位置。因此,在某些情况下也可以作为桥梁语义分割的研究素材之一[^4]. 为了更好地利用上述任何一个数据集来进行桥梁语义分割实验,建议先了解具体的应用需求和技术背景,并据此调整预处理流程以适应所选模型的要求。例如,可能需要按照指定尺寸裁剪输入图像并确保相应的掩码文件同步更新以便后续验证准确性。 ```python import os from PIL import Image def preprocess_images(input_dir, output_dir, target_size=(512, 512)): """批量裁剪原始影像到目标尺寸""" if not os.path.exists(output_dir): os.makedirs(output_dir) for filename in os.listdir(input_dir): img_path = os.path.join(input_dir, filename) with Image.open(img_path) as im: resized_im = im.resize(target_size) save_path = os.path.join(output_dir, filename) resized_im.save(save_path) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NoABug

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值