前言
算法日志记录PTA
题目
在一个2^k * 2^k (k为正整数,k<=10,length=2^k)个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为一特殊方格(其坐标为aa,bb,分别代表行坐标号和列坐标号),以及有四种L型骨牌(如下图)。求用若干块这种L型骨牌实现除该特殊点棋盘的全覆盖。(本题要求采用分治算法做)
输入格式:
输入三个数,分别是aa,bb,length.
输出格式:
输出整个棋盘。其中特殊方格填为0,然后铺棋盘的顺序为:先铺四个子棋盘交界的部分,然后递归的对每个子棋盘按照左上,右上,右下,左下的顺时针顺序铺满棋盘。每一块骨牌中三个方格数字相同,按照顺序标号,即第一块骨牌全标为1,第二块骨牌全标为2,…,以此类推。输出的每个数占4个场宽,右对齐。
输入样例:
1 1 4
表示:特殊格子为(1,1),棋盘有4行4列。
输出样例:
0 2 3 3
2 2 1 3
5 1 1 4
5 5 4 4
表示:先铺三个1(一块L型骨牌),再铺三个2,…,最后铺三个5.
代码c++:
#include<iostream>
#include<math.h>
#include<stdio.h>
#include<iomanip>
using namespace std;
int dp[2026][2026];///棋盘最大2^k*2^k ,k=10
int v[4][2]={0,0,1,0,1,1,0,1};///四个格子基于原点的坐标
//深搜递归分治
/**
*parm
*x,y棋盘左上角坐标
*aa,ay 特殊点坐标
*k 棋盘规模 2^k*2^k
*/
int step=1;
void dfs(int x,int y,int ax,int ay,int k)
{
int mx = x+int(pow(2,k)/2)-1;
int my = y+int(pow(2,k)/2)-1;//找出中间点坐标
if(k==1)
{
for(int i=0;i<4;i++)
{
int tx = x+v[i][0];
int ty = y+v[i][1];
if(tx!=ax||ty!=ay)dp[ty][tx]=step;//填充格子
}
step++;
return;
}
int flag = 0;//特殊点所在的棋盘
if(ax<=mx&&ay<=my)flag=0;//特殊点在左上棋盘
if(ax>=(mx+1)&&ay<=my)flag=1;//特殊点在右上棋盘
if(ax>=(mx+1)&&ay>=(my+1))flag=2;//特殊点在右下棋盘
if(ax<=mx&&ay>=(my+1))flag=3;//特殊点在左下棋盘
for(int i=0;i<4;i++)
if(i!=flag)dp[my+v[i][1]][mx+v[i][0]]=step;//填充非特殊点的棋盘
step++;
for(int i=0;i<4;i++)
{
//找新棋盘的原点坐标
int tx = mx+v[i][0];
int ty = my+v[i][1];
int ox = tx;
int oy = ty;
if(i==0)
{
ox =ox-pow(2,k-1)+1;
oy =oy-pow(2,k-1)+1;
}
if(i==1)
{
oy =oy-pow(2,k-1)+1;
}
if(i==3)
{
ox =ox-pow(2,k-1)+1;
}
if(i!=flag)
dfs(ox,oy,tx,ty,k-1);//非特殊点的棋盘
else
dfs(ox,oy,ax,ay,k-1);//特殊点的棋盘
}
}
int main()
{
int ax,ay,len;
cin>>ax>>ay>>len;
int k = 0;
while(len>>=1)k++;
dfs(0,0,ay-1,ax-1,k);
for(int i=0;i<pow(2,k);i++)
{
for(int j=0;j<pow(2,k);j++)
printf("%4d",dp[i][j]);
cout<<"\n";
}
return 0;
}