自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 利用Arcpy批量对影像唯一值进行重分类(二分类)

在一些情况下,我们需要将唯一值影像在一定范围内的分为一类,在范围外的分为另外一类,Acrgis Pro也提供了唯一值的重分类的操作,但是对于数量很多的唯一值,一个个手动更改显得费时费力;利用Arcpy可以批量对影像的唯一值进行重分类,这里以二分类为例。本文的分类要求:将影像值为0的分类为1,将值不为0的分类为-1。显然手动更改费时费力!

2024-03-23 23:01:35 421

原创 利用Arcpy筛选孤立图斑并批量更改其属性

生态系统分类在自动化分类过程中“针叶”和“阔叶”可能会出现错分的情况,Arcgis自带的栅格计算器和按属性选择具有简单易操作等特点,但是对于广域面积范围,多条件,批量筛选和更改等操作显得力不从心。利用Arcgis自带的python库(Arcpy)能够实现批量筛选和更改。本文以某地区森林生态系统分类为案例,借助于Arcgis Pro3.0.2提供的Python3.9对分类中出现的孤立图斑进行修改。

2024-03-23 22:20:50 533

原创 利用GEE批量下载基于L8影像SR数据集的某一月份的时序RSEI数据

SR数据集属于Landsat8影像的L2级数据,优点是经过了大气处理。本文基于L8影像的SR数据集,计算了北京市2013年到2022年8月份的RSEI数据。利用GEE批量下载某一月份时序RSEI数据的具体流程如下:

2023-09-01 10:46:02 1093 3

原创 利用GEE批量逐月下载L8影像归一化的NDVI数据

大致步骤是:数据集去云处理——筛选所需要的月份并根据研究区裁剪——剔除无效数据——水体掩膜、计算NDVI并归一化——批量下载。

2023-08-25 12:19:14 1738 1

原创 利用GEE批量下载Landsat8月份影像

注意:如果在导出到云盘这一步出现错误可能是没有影像数据,可以通过查看影像的原始信息来确认!

2023-08-19 23:14:52 1405

原创 GEE水体掩膜阈值选择0.1还是0.2?

本文选取了两景云量很少的Landsat 8数据,img1:LANDSAT/LC08/C02/T1_TOA/LC08_127042_20220906,云量为0.11%;本文使用了0.1和0.2两种阈值,来探讨和对比其各自的去水体效果。img2:LANDSAT/LC08/C02/T1_TOA/LC08_127041_20220906,云量为0.56%。0.1的阈值水体掩膜范围比0.2的更大,在图像上表现为更为圆滑和彻底;即:水体掩膜的阈值越小,去水体效果更为彻底。

2023-08-17 10:47:22 833

原创 GEE两种去云函数对Landsat8数据集的比较

选取了一景含云量为99.97%的Landsat 8影像,ID号为:LANDSAT/LC08/C02/T1_TOA/LC08_127042_20220314。由此可知,removeCloud的去云效果更为彻底,当然cloudMask也可以调整阈值来获得更好的效果,cloudMask还具有代码简洁的优点。

2023-08-16 23:06:54 745

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除