远程连接jupyter-notebook及配置

本文详细介绍了如何在服务器端设置JupyterNotebook,包括安装screen防止断连、配置conda环境和Jupyter服务,以及在电脑端进行SSH映射和浏览器访问。还涵盖了jupyter-notebook的配置,如风格更改、代码自动补全功能的安装与启用,以及如何添加和删除jupyterkernel。
部署运行你感兴趣的模型镜像

目录

一、远程连接

服务器端设置

电脑端设置

二、jupyter-notebook配置

配置jupyter

三、显示风格及代码自动补全

更改风格

代码自动补全功能

四、添加、删除jupyter kernel


一、远程连接

服务器端设置


1. 下载screen,防止断连

sudo apt-get install screen


    # 启动scree

screen # 在终端输入screen后,enter回车即成功启动

2. 在服务器端开启jupyter服务

    source activate env-name # 开启自己的虚拟conda环境
    pip install jupyter notebook==6.1.0  (版本号是重点,该版本能与代码自动补全功能相兼容)
    cd workspace # cd 到相应的文件下
    jupyter-notebook # 启动notebook

电脑端设置


1. ssh 远程映射远程服务器jupyter端口

ssh -L:本机映射端口:localhost:远程jupyter端口 用户名@远程服务器ip
# 输入远程服务器密码, 即可映射远程jupyter端口

2. 在浏览器启动jupyter
url 栏: 输入 localhost:本地映射端口
有如下展示,按照要求输入所需的token

ps服务器在启动jupyter的时候会给用户一个token。


------------------------------------------------------------

二、jupyter-notebook配置


配置jupyter


将conda环境添加到jupyter中,如不添加默认使用基版本会出现。
ModuleNotFoundError:No Module named  "XXX"
详见

①安装ipykernel

conda install ipykernel # 为Jupyter Notebook配置虚拟环境

②将虚拟环境加入到jupyter的kernel中:(可不加,默认是python3就是该环境,加了方便区分)

python -m ipykernel install  --name 环境名 --display-name "环境名"


----------------------------------------------------------------

三、显示风格及代码自动补全


详见 Jupyter Notebook 避坑指南
安装完之后详见设置  

更改风格


在jupyter代码行中输入

!pip install jupyterthemes
!jt -t oceans16 -f fira -ofs 12 -dfs 14 -T -N -cellw 80% -lineh 120
#注:几个主要参数的解释:-f(字体) -fs(字体大小) -cellw(占屏比或宽度) -lineh(行间距) -ofs(输出段的字号) -T(显示工具栏) -N(显示自己主机名)

代码自动补全功能


①首先通过pip安装两个第三方库:

pip install jupyter_contrib_nbextensions
pip install jupyter_nbextensions_configurator

②在jupyter代码行中输入:

!jupyter contrib nbextension install --user
!jupyter nbextensions_configurator enable --user
#可能会报错:ModuleNotFoundError: No module named 'notebook.base'
#解决:pip install --upgrade notebook==6.1.0  或 卸载重新安装jupyter notebook

③Hinterland选项

  • 重新进入jupyter notebook,发现多了个选项卡:Configurable nbextensions
  • 勾选下面的Hinterland即可开通自动补全功能。

四、添加、删除jupyter kernel


添加jupyter kernel
首先激活环境,之后输入
注:此处一定要激活环境,否则不能生效  source activate XXX
conda install ipykerne
python -m ipykernel install --user --name [环境名称]

查看jupyter kernel

jupyter kernelspec list

添加jupyter kernel

python -m ipykernel install --user --name [环境名称]

删除jupyter kernel

jupyter kernelspec remove + kernel名称


 

您可能感兴趣的与本文相关的镜像

Python3.8

Python3.8

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

### 解决方案概述 当遇到 **Jupyter Notebook无法打开** 的问题时,可能涉及多种原因。以下是针对不同情况的具体分析和解决方案。 #### 1. 多环境配置下的内核缺失问题 如果在 Jupyter 中能够看到多个 Conda 环境,但在创建新笔记本时仅显示一个内核,则可能是由于某些环境中未正确安装 `ipykernel` 或者内核注册失败所致[^1]。 要解决此问题,可以按照以下方法操作: - 首先,在目标 Conda 环境下激活并安装必要的依赖项: ```bash conda activate your_env_name pip install ipykernel ``` - 接着,将当前环境中的 Python 内核添加到 Jupyter 中: ```bash python -m ipykernel install --user --name=your_env_name --display-name "Python (your_env_name)" ``` 上述命令会将指定的 Conda 环境作为独立内核注册至 Jupyter Notebook--- #### 2. 开发体验不佳引发的功能异常 对于开发者而言,Spark Shell 上运行 Jupyter 可能存在兼容性或性能瓶颈等问题,这可能导致用户体验下降甚至功能不可用的情况[^2]。 为了改善这一状况,建议采用如下措施之一: - 使用远程集群模式部署 Jupyter Server 并连接本地客户端; - 替代工具如 Zeppelin 或 Databricks 提供更优支持; 这些替代方式通常具备更好的集成性和稳定性,从而减少因资源不足而产生的错误风险。 --- #### 3. 地址分配冲突引起的启动失败 当尝试启动 Jupyter Notebook 出现类似于 `"OSError: [Errno 99] Cannot assign requested address"` 错误消息时,通常是网络端口被占用或者绑定地址设置不当所引起[^3]。 对此类问题可采取下列步骤排查修复: - 修改默认监听IP地址为 localhost 而不是0.0.0.0 : ```bash jupyter notebook --ip="localhost" ``` 这样可以避免外部访问请求干扰正常服务进程。 - 如果仍然存在问题,考虑更改默认使用的HTTP端口号(8888),通过增加参数实现自定义映射: ```bash jupyter notebook --port=9999 ``` 以上调整有助于绕过潜在的防火墙规则限制以及其它程序间的竞争关系影响。 --- ### 总结说明 综上所述,面对不同类型的原因造成Jupyter Notebook无法成功开启的情形,需分别从环境管理、开发框架适配度优化以及基础通信层面上逐一排除障碍因素才能最终达成稳定运行状态。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值