ALDS1_5_D:The Number of Inversions

题目链接:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ALDS1_5_D

输入:一个乱序序列

输出:该序列中,乱序对的个数;

思路:直接遍历的复杂度是n^2会超时,所以采用归并排序中的方法,在归并排序中的merge中,每次选取较大的元素放到前面时,这是一个乱序对,所以每次执行这个过程时,我们都给乱序对的个数加n1-i;(i是L数组中已经移了的个数,n1是L数组中一共的个数,n1-i表示的是L数组中最终由多少个元素移到了R数组的元素的后面)。代码如下:

#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
#define maxx 200100
#define infinity 2000000000
typedef long long ll;

int L[maxx/2+2],R[maxx/2+2];
ll ans=0;

void merge(int A[],int left,int mid,int right){
	int n1=mid-left,n2=right-mid;
	for(int i=0;i<n1;i++) L[i]=A[left+i];
	for(int i=0;i<n2;i++) R[i]=A[mid+i];
	int i=0,j=0;
	L[n1]=R[n2]=infinity;
	for(int x=left;x<right;x++){
		if(L[i]<=R[j]) {
			A[x]=L[i++];
		}else{
			A[x]=R[j++];
			ans+=n1-i;
		}
	}
	return ;
}

void merge_sort(int A[],int left ,int right){
	if(left+1<right){
		int mid =(left+right)/2;
		merge_sort(A,left,mid);
		merge_sort(A,mid,right);
		merge(A,left,mid,right);
	}
	return ;
}

int main (){
	int n;
	cin>>n;
	int A[maxx];
	for(int i=0;i<n;i++) cin>>A[i];
	merge_sort(A,0,n);
	cout<<ans<<endl;
	return 0;
}

错点:

1.不能每次选取R数组中的数的时候都把ans++,要ans+=n1-i,因为在插入这个数的时候,前面的插入的所有L数组的数都要算进逆序数,不止1个

2.注意ans的类型要是long long , 因为最坏情况是完全逆序,有n*(n-1)/2个逆序数,n最大是200000,n^2会超过2^9;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值