【技能点】杜教筛

∑ i = 1 n f ( i ) \sum^{n}_{i=1}f(i) i=1nf(i) f f f为积性函数。
S ( n ) = ∑ i = 1 n f ( i ) S(n)=\sum^{n}_{i=1}f(i) S(n)=i=1nf(i)

      ∑ i = 1 n ( f ∗ g ) ( i ) = ∑ i = 1 n ∑ d ∣ i f ( i d ) g ( d ) = ∑ i = 1 n ∑ d = 1 n [ d ∣ i ] f ( i d ) g ( d ) = ∑ d = 1 n g ( d ) ∑ i = 1 n [ d ∣ i ] f ( i d ) = ∑ d = 1 n g ( d ) ∑ i = 1 ⌊ n d ⌋ f ( i ) = ∑ d = 1 n g ( d ) S ( ⌊ n d ⌋ ) = g ( 1 ) S ( n ) + ∑ d = 2 n g ( d ) S ( ⌊ n d ⌋ ) \begin{aligned} &\ \ \ \ \ \sum_{i=1}^{n}(f*g)(i)\\ &=\sum_{i=1}^{n}\sum_{d|i}f\left(\frac{i}{d}\right)g(d)\\ &=\sum_{i=1}^{n}\sum_{d=1}^{n}[d|i]f\left(\frac{i}{d}\right)g(d)\\ &=\sum_{d=1}^{n}g(d)\sum_{i=1}^{n}[d|i]f\left(\frac{i}{d}\right)\\ &=\sum_{d=1}^{n}g(d)\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}f(i)\\ &=\sum_{d=1}^{n}g(d)S\left(\left\lfloor \frac{n}{d}\right\rfloor\right)\\ &=g(1)S(n)+\sum_{d=2}^{n}g(d)S\left(\left\lfloor \frac{n}{d}\right\rfloor\right)\\ \end{aligned}      i=1n(fg)(i)=i=1ndif(di)g(d)=i=1nd=1n[di]f(di)g(d)=d=1ng(d)i=1n[di]f(di)=d=1ng(d)i=1dnf(i)=d=1ng(d)S(dn)=g(1)S(n)+d=2ng(d)S(dn)
所以可以得到
g ( 1 ) S ( n ) = ∑ i = 1 n ( f ∗ g ) ( i ) − ∑ d = 2 n g ( d ) S ( ⌊ n d ⌋ ) g(1)S(n)=\sum_{i=1}^{n}(f*g)(i)-\sum_{d=2}^{n}g(d)S\left(\left\lfloor \frac{n}{d}\right\rfloor\right) g(1)S(n)=i=1n(fg)(i)d=2ng(d)S(dn)
如果要求 ∑ i = 1 n f ( i ) \sum^{n}_{i=1}f(i) i=1nf(i),所要做的就是为 f f f找到一个合适的 g g g

常用的狄利克雷卷积如下:
在狄利克雷卷积下的单位元为 ϵ \epsilon ϵ, ϵ ( n ) = [ n = 1 ] \epsilon(n)=[n=1] ϵ(n)=[n=1]
F , f F,f F,f为任意函数
F ∗ ϵ = F F*\epsilon=F Fϵ=F
1 ∗ μ = ϵ 1*\mu=\epsilon 1μ=ϵ 1 1 1 μ \mu μ互为逆元)
1 ∗ F = f ⇔ f ∗ μ = F 1*F=f\Leftrightarrow f*\mu=F 1F=ffμ=F
1 ∗ φ = n ⇔ n ∗ μ = φ 1*\varphi=n\Leftrightarrow n*\mu=\varphi 1φ=nnμ=φ φ \varphi φ为欧拉函数)
1 ∗ n = σ ⇔ σ ∗ μ = n 1*n=\sigma\Leftrightarrow\sigma*\mu=n 1n=σσμ=n σ \sigma σ为约数和)
1 ∗ 1 = τ ⇔ τ ∗ μ = 1 1*1=\tau\Leftrightarrow\tau*\mu=1 11=ττμ=1 τ \tau τ为约数个数)

例题:

  1. μ \mu μ的前 n n n项和 S ( n ) S(n) S(n)
    μ \mu μ函数找到的合适的 g ( i ) = 1 g(i)=1 g(i)=1
    所以可以得到:
    S ( n ) = 1 − ∑ i = 2 n S ( ⌊ n i ⌋ ) S(n)=1-\sum_{i=2}^{n}S\left(\left\lfloor \frac{n}{i}\right\rfloor\right) S(n)=1i=2nS(in)
  2. φ \varphi φ的前 n n n项和 S ( n ) S(n) S(n)
    φ \varphi φ函数找到的合适的 g ( i ) = 1 g(i)=1 g(i)=1
    所以可以得到:
    S ( n ) = ∑ i = 1 n i − ∑ i = 2 n S ( ⌊ n i ⌋ ) = n ( n + 1 ) 2 − ∑ i = 2 n S ( ⌊ n i ⌋ ) \begin{aligned} S(n)&=\sum_{i=1}^{n}i-\sum_{i=2}^{n}S\left(\left\lfloor \frac{n}{i}\right\rfloor\right)\\ &=\frac{n(n+1)}{2}-\sum_{i=2}^{n}S\left(\left\lfloor \frac{n}{i}\right\rfloor\right)\\ \end{aligned} S(n)=i=1nii=2nS(in)=2n(n+1)i=2nS(in)
  3. μ ( i ) ∗ i k \mu(i)*i^k μ(i)ik的前 n n n项和 S ( n ) S(n) S(n)
    μ ( i ) ∗ i k \mu(i)*i^k μ(i)ik函数找到的合适的 g ( i ) = i k g(i)=i^k g(i)=ik
    所以可以得到:
    S ( n ) = ∑ i = 1 n ∑ d ∣ i μ ( d ) ∗ d k ∗ ( i d ) k − ∑ i = 2 n i k ∗ S ( ⌊ n i ⌋ ) = ∑ i = 1 n ∑ d ∣ i μ ( d ) ∗ i k − ∑ i = 2 n i k ∗ S ( ⌊ n i ⌋ ) = ∑ i = 1 n i k ∑ d ∣ i μ ( d ) − ∑ i = 2 n i k ∗ S ( ⌊ n i ⌋ ) = 1 − ∑ i = 2 n i k ∗ S ( ⌊ n i ⌋ ) \begin{aligned} S(n)&=\sum_{i=1}^{n}\sum_{d|i}\mu(d)*d^k*\left(\frac{i}{d}\right)^{k}-\sum_{i=2}^{n}i^k*S\left(\left\lfloor \frac{n}{i}\right\rfloor\right)\\ &=\sum_{i=1}^{n}\sum_{d|i}\mu(d)* i^{k}-\sum_{i=2}^{n}i^k*S\left(\left\lfloor \frac{n}{i}\right\rfloor\right)\\ &=\sum_{i=1}^{n} i^{k}\sum_{d|i}\mu(d)-\sum_{i=2}^{n}i^k*S\left(\left\lfloor \frac{n}{i}\right\rfloor\right)\\ &=1-\sum_{i=2}^{n}i^k*S\left(\left\lfloor \frac{n}{i}\right\rfloor\right)\\ \end{aligned} S(n)=i=1ndiμ(d)dk(di)ki=2nikS(in)=i=1ndiμ(d)iki=2nikS(in)=i=1nikdiμ(d)i=2nikS(in)=1i=2nikS(in)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值