第二类斯特林数
定义:S(n,k)
,表示将n
个两两不同的元素,划分为k
个互不区分的非空子集的方案数。
递推式:S(n,k) = S(n-1,k-1) + k*S(n-1,k)
边界:S(0,0)=0
,S(1~n,0)=1
递推式: { n k } = { n − 1 k − 1 } + k { n − 1 k } \begin{Bmatrix}n\\ k\end{Bmatrix}=\begin{Bmatrix}n-1\\ k-1\end{Bmatrix}+k\begin{Bmatrix}n-1\\ k\end{Bmatrix} {nk}={n−1k−1}+k{n−1k}
边界: { n 0 } = [ n = 0 ] \begin{Bmatrix}n\\ 0\end{Bmatrix}=[n=0] {n0}=[n=0]。
通项公式:S(n,k) = SUM(i=0->k){[(-1)^(k-i) * i^n] / [i! * (k-i)!]}
通项公式: { n k } = ∑ i = 0 k ( − 1 ) k − i i n i ! ( k − i ) ! \begin{Bmatrix}n\\k\end{Bmatrix}=\sum\limits_{i=0}^k\dfrac{(-1)^{k-i}i^n}{i!(k-i)!} {nk}=i=0∑ki!(k−i)!(−1)k−iin