【组合数学】第二类斯特林数

第二类斯特林数

定义:S(n,k),表示将n个两两不同的元素,划分为k个互不区分的非空子集的方案数。

递推式:S(n,k) = S(n-1,k-1) + k*S(n-1,k)

边界:S(0,0)=0,S(1~n,0)=1

递推式: { n k } = { n − 1 k − 1 } + k { n − 1 k } \begin{Bmatrix}n\\ k\end{Bmatrix}=\begin{Bmatrix}n-1\\ k-1\end{Bmatrix}+k\begin{Bmatrix}n-1\\ k\end{Bmatrix} {nk}={n1k1}+k{n1k}

边界: { n 0 } = [ n = 0 ] \begin{Bmatrix}n\\ 0\end{Bmatrix}=[n=0] {n0}=[n=0]

通项公式:S(n,k) = SUM(i=0->k){[(-1)^(k-i) * i^n] / [i! * (k-i)!]}

通项公式: { n k } = ∑ i = 0 k ( − 1 ) k − i i n i ! ( k − i ) ! \begin{Bmatrix}n\\k\end{Bmatrix}=\sum\limits_{i=0}^k\dfrac{(-1)^{k-i}i^n}{i!(k-i)!} {nk}=i=0ki!(ki)!(1)kiin

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值