题目链接 3.3 circle
3.3 circle
★实验任务
最近 silchen 又发现了一个关于圆的有趣的问题:在圆上有 2n 个不同的点,按顺序排列,
n=2 的时候如图:
silchen 用 m 条线段把这些点连接了起来(每个点保证只连一条线段),现在他想知道这样的连接这些线段是否相交,如果不相交输出“YES”,相交输出“NO”。
★数据输入
第一行一个整数 T(1<=T<=10),接下来 T 组数据,每组数据如下第一行一个正整数 n(1<=n<=100000)和 m(1<=m<=n)。接下来 m 行,
每行两个正整数 x 和 y,表示线段的两个端点编号。
1<=x,y<=2*n,保证每个端点只会出现一次对于 60%的数据:1<=m<=n<=1000
对于 100%的数据:1<=m<=n<=100000
★数据输出
对每组数据输出一行 YES 或 NO。
★样例
输入示例
输出示例
4
YES
2 2
NO
1 2
YES
3 4
NO
这题上课没好好听,这题和老师讲的括号匹配问题一模一样!!!
我是把圆周看成一个字符串,每个输入的点较小的作为左括号,较大的作为左括号。
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <stack>
#include <algorithm>
using namespace std;
/*
括号匹配算法
*/
const int MAX_N=100000;
int a[2*MAX_N+5];
int main()
{
int T,n,m,x,y,k,cnt;
bool flag;
scanf ("%d",&T);
while (T--)
{
flag=true;
memset(a,0,sizeof(a));
cnt=1;
stack <int> s;
scanf ("%d %d",&n,&m);
for (int i=0;i<m;i++)
{
scanf ("%d %d",&x,&y);
if (x<y)
{
a[x]=cnt;
a[y]=-cnt;
cnt++;
}
else
{
a[x]=-cnt;
a[y]=cnt;
cnt++;
}
}
for (int i=1;i<=200000;i++)
{
if (a[i]>0)
{
s.push(a[i]);
}
else if (a[i]<0)
{
if (!s.empty()&&s.top()+a[i]==0)
{
s.pop();
}
else
{
flag=false;
break;
}
}
}
if (flag)
printf ("YES\n");
else
printf ("NO\n");
}
return 0;
}
/*
4
2 2
1 2
3 4
2 2
1 3
2 4
3 3
1 6
5 2
4 3
3 3
1 4
2 6
3 5
*/