状态表示:f[i,j]表示为所有在第一个序列前i个字母中出现,第二个序列前j个字母中出现的子序列的最长长度。
状态计算:
将此问题分解成两半考虑
如果两个字符相等,就可以直接转移到f[i-1][j-1],不相等的话,两个字符一定有一个可以抛弃,可以对f[i-1][j],f[i][j-1]两种状态取max来转移。
代码
#include <iostream>
using namespace std;
const int N = 1010;
int n, m;
char a[N], b[N];
int f[N][N];
int main() {
cin >> n >> m >> a + 1 >> b + 1;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (a[i] == b[j]) {
f[i][j] = f[i - 1][j - 1] + 1;
} else {
f[i][j] = max(f[i - 1][j], f[i][j - 1]);
}
}
}
cout << f[n][m] ;
return 0;
}
最短编辑问题
状态表示:f[i,j]表示将a[1 ~ i]变为b[1 ~ j]的操作次数。
状态计算:
对于删除操作:如果A串删除一个字符变为B串,说明A串1 ~ i-1与1 ~ j字符已经相等,故f[i,j]=f[i-1,j]+1。
对于增加操作:如果A串增加一个字符变为B串,说明增加字符等于b[j],在填之前1~ i与 1~ j-1已经匹配相等 所以可以理解为a的前i个字母和b的前j-1个字母已经匹配,故f[i,j]=f[i,j-1]+1。
对于增加操作解释:在a[i]后面增加一个字母,a[1 ~ i]和b[1 ~ j]就匹配了,匹配就意味着增加的字符必须是b[j],同时意味着a[1 ~ i]已经和b[1~j-1]匹配了,那么所有将a[1 ~ i]变成b[1 ~ j - 1]的操作方案的最小步数就是f[i, j - 1]。
对于修改操作:把a[i]改成b[j]之后想要a[1 ~ i]与b[ 1~ j]匹配 ,那么修改这一位之前,a[1 ~ ( i-1 )]应该与b[1~ j-1)]匹配 ,此时f[i,j]=f[i-1,j-1]+1。但是如果本来a[i]与b[j]这一位上就相等,那么不用改,即f[i,j]=f[i-1,j-1]+0。
另外应注意出初始化问题
f[0][i]如果a初始长度就是0,那么只能用插入操作让它变成b
f[i][0]同样地,如果b的长度是0,那么a只能用删除操作让它变成b
代码
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int n, m;
char a[N], b[N];
int f[N][N];
int main()
{
scanf("%d%s", &n, a + 1);
scanf("%d%s", &m, b + 1);
for (int i = 0; i <= m; i ++ ) f[0][i] = i;
for (int i = 0; i <= n; i ++ ) f[i][0] = i;
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
{
f[i][j] = min(f[i - 1][j] + 1, f[i][j - 1] + 1);
if (a[i] == b[j]) f[i][j] = min(f[i][j], f[i - 1][j - 1]);
else f[i][j] = min(f[i][j], f[i - 1][j - 1] + 1);
}
printf("%d\n", f[n][m]);
return 0;
}